Malaysian Journal of Analytical Sciences Vol 19 No 6 (2015): 1250 - 1255

 

 

 

ANNEALING EFFECT ON THE PHOTOELECTROCHEMICAL PROPERTIES OF BiVO4 THIN FILM ELECTRODES

 

(Kesan Sepuh Lindap terhadap Sifat Fotoelektrokimia Elektrod Filem Nipis BiVO4)

 

Siti Nur Farhana Mohd Nasir1*, Mohd Asri Mat Teridi1, Mehdi Ebadi1, Jagdeep Singh Sagu2,

Mohamad Yusof Sulaiman1, Norasikin Ahmad Ludin1, Mohd Adib Ibrahim1

 

1Solar Energy Research Institute,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Department of Chemistry,

Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom

 

*Corresponding author: farhanaana98@gmail.com

 

 

Received: 4 February 2015; Accepted: 29 September 2015

 

 

Abstract

Monoclinic bismuth vanadate (BiVO4) thin film electrodes were fabricated on fluorine-doped tin oxide via aerosol-assisted chemical vapour deposition (AACVD). Annealing and without annealing effect of thin films were analysed by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultravioletvisible  spectrophotometry (UV-Vis) and current-voltage measurement. All BiVO4 thin films showed an anodic photocurrent. The sample of BiVO4 annealed at 400 °C exhibited the highest photocurrent density of 0.44 mA cm-2 vs. Ag/AgCl at 1.23 V.

 

Keywords: BiVO4 thin film, AACVD, PEC water splitting, annealing

 

Abstrak

Elektrod filem nipis monoklinik bismut vanadat, BiVO4 telah dienapkan pada substrat fluorin terdop-timah oksida melalui kaedah pemendapan bantuan-aerosol wap kimia  (AACVD).  Kesan sepuh lindap terhadap filem nipis dianalisis menggunakan pembelauan sinar-X (XRD), analisis mikroskop elektron imbasan pancaran medan (FESEM), spektrofotometer ultralembayung-nampak (UV-Vis) dan pengukuran arus-voltan. Semua sampel yang dihasilkan menunjukkan arusfoto anodik. Sampel BiVO4 yang melalui sepuh lindap pada suhu 400 °C menunjukkan ketumpatan arusfoto tertinggi iaitu 0.44 mA cm-2 vs. Ag/AgCl pada 1.23 V.

 

Kata kunci: filem nipis BiVO4, AACVD, PEC pembelahan air, sepuh lindap

 

References

1.       Osterloh, F. E. and Parkinson, B. A. (2011). Recent developments in solar water-splitting photocatalysis. MRS Bull., 36 (1): 17 - 22.

2.       Lewis, N. S., Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q. and Santori, E. A. (2010). Solar Water Splitting Cells. Chem. Rev., 110 (11): 6446 - 6473.

3.       Chen, Z.,  Jaramillo, T. F., Deutsch, T. G., Kleiman-Shwarsctein, A., Forman, A. J., Gaillard, N., Garland, R., Takanabe, K., Heske, C., Sunkara, M., McFarland, E. W., Domen, K., Miller, E. L., Turner, J. A. snd Dinh, H. N. (2010). Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols.  J. Mater. Res., 25 (1): 3 - 16.

4.       Turner, J., Sverdrup, G., Mann, M.K., Maness, P-C., Kroposki, B., Ghirardi, M. and Blake, D. (2008). Renewable hydrogen production. Int. J. Energy Res, 32(5): 379 - 407.

5.       Thimsen, P. B. E., Rastgar, N. 2008. Nanostructured TiO2 Films with Controlled Morphology Synthesized in a Single Step Process: Performance of Dye-Sensitized Solar Cells and Photo Water splitting. J. Phys. Chem. C., 112 (11): 4134 - 4140.

6.       Roel van de Krol, J. S. and Liang, Y. (2008). Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem., 18 (20): 2311 - 2320.

7.       Neves, M. C. and Trindade, T. (2002). Chemical bath deposition of BiVO4. Thin Solid Films., 406 (1-2): 93 - 97.

8.       Zhou, Y., Vuille, K., Heel, A., Probst, B., Kontic, R., Patzke, G. R. 2010. An inorganic hydrothermal route to photocatalytically active bismuth vanadate. Appl. Catal. A Gen., 375(1): 140 - 148.

9.       Parmar, K. P. S., Kang, H. J., Bist, A. Dua, P. and Jang, J. S. and Lee, J. S. (2012). Photocatalytic and Photoelectrochemical Water Oxidation over Metal-Doped Monoclinic BiVO4 Photoanodes. ChemSusChem. 5, (10): 1926 - 1934.

10.    Swihartm M. T. (2003). Vapor-phase synthesis of nanoparticles. Curr. Opin. Coll. Int. Sci., 8(1): 127 - 133.

11.    Palgrave, R. G. and Parkin, I. P. (2006). Aerosol assisted chemical vapor deposition using nanoparticle precursors: a route to nanocomposite thin film. J. Am. Chem. Soc., 128 (5): 1587 - 1597.

12.    Tokunaga, S., Kato, H. and Kudo, A. (2001). Selective Preparation of Monoclinic and Tetragonal BiVO4 with Scheelite Structure and Their Photocatalytic Properties. Chem. Mater., 13 (12): 4624 - 4628.

13.    Thalluri, S. R. M., Virga, A., Russo, N. and Saracco, G. (2013). Insights from Crystal Size and Band Gap on the Catalytic Activity of Monoclinic BiVO4. Int. J. Chem. Eng. Appl., 4 (5): 305 - 309.

14.    Seabold, J.A., Zhu, K. and Neale, N. R. (2014). Efficient solar photoelectrolysis by nanoporous Mo: BiVO4 through controlled electron transport. Phys Chem Chem Phys, 16(3): 1121 - 1131.

15.    Jeon, T.H. and Park, H. (2011). Cobalt – Phosphate Complexes Catalyze the Photoelectrochemical Water Oxidation of BiVO4 Electrodes Water Oxidation of BiVO4 Electrodes. Phys. Chem. Chem. Phys., 13(48): 21392 - 21401.

16.    Baoping Xie, Y. X., Zhang, H., Cai, P. and Qiu, R. (2006). Simultaneous photocatalytic reduction of Cr(VI) and oxidation of phenol over monoclinic BiVO4 under visible light irradiation. Chemosphere, 63(6): 956 - 963.

 




Previous                    Content                    Next