Malaysian Journal of Analytical Sciences Vol 19 No 6 (2015): 1415 - 1430

 

 

 

SPATIAL AIR QUALITY MODELLING USING CHEMOMETRICS TECHNIQUES: A CASE STUDY IN PENINSULAR MALAYSIA

 

(Pemodelan Ruang Kualiti Udara Menggunakan Teknik-Teknik Kemometrik: Satu Kajian Kes di Semenanjung Malaysia)

 

Azman Azid1*, Hafizan Juahir1, Mohammad Azizi Amran1, Zarizal Suhaili2, Mohamad Romizan Osman3,

 Asyaari Muhamad1,4, Ismail Zainal Abidin1, Nur Hishaam Sulaiman1, Ahmad Shakir Mohd Saudi1

 

1East Coast Environmental Research Institute,

Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Terengganu, Terengganu, Malaysia

2Faculty of Bioresources and Food Industry,

Universiti Sultan Zainal Abidin, Tembila Campus, 22200 Besut, Terengganu, Malaysia

3Kulliyyah of Science,

International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia

4Institute of the Malay World and Civilisation (ATMA),

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: azmanazid@unisza.edu.my

 

 

Received: 14 April 2015; Accepted: 9 July 2015

 

 

Abstract

This study shows the effectiveness of hierarchical agglomerative cluster analysis (HACA), discriminant analysis (DA), principal component analysis (PCA), and multiple linear regressions (MLR) for assessment of air quality data and recognition of air pollution sources. 12 months data (January-December 2007) consisting of 14 stations in Peninsular Malaysia with 14 parameters were applied. Three significant clusters - low pollution source (LPS), moderate pollution source (MPS), and slightly high pollution source (SHPS) were generated via HACA. Forward stepwise of DA managed to discriminate eight variables, whereas backward stepwise of DA managed to discriminate nine variables out of fourteen variables. The PCA and FA results show the main contributor of air pollution in Peninsular Malaysia is the combustion of fossil fuel from industrial activities, transportation and agriculture systems. Four MLR models show that PM10 account as the most and the highest pollution contributor to Malaysian air quality. From the study, it can be stipulated that the application of chemometrics techniques can disclose meaningful information on the spatial variability of a large and complex air quality data. A clearer review about the air quality and a novelty design of air quality monitoring network for better management of air pollution can be achieved via these methods.

Keywords:  air quality, chemometrics, pattern recognition, Peninsular Malaysia

 

Abstrak

Kajian ini menunjukkan keberkesanan kaedah hirarki algorithma analisa kelompok (HAAK), analisis pembezalayan (AP), analisis komponen utama (AKU), dan kepelbagaian regresi linear (KRL) untuk penilaian data kualiti udara dan pengenalpastian punca pencemaran udara. Data 12 bulan (Januari-Disember 2007) terdiri daripada 14 stesen di Semenanjung Malaysia dengan 14 parameter telah digunakan. Tiga kelompok besar - sumber pencemaran rendah (SPR), sumber pencemaran sederhana (SPS), dan sumber pencemaran sedikit tinggi (SPST) diwujudkan melalui HAAK. Melalui AP, kaedah langkah demi langkah ke hadapan berjaya membezalayan lapan pembolehubah, manakala kaedah langkah demi langkah kebelakang berjaya membezalayan sembilan pembolehubah daripada 14 belas pembolehubah. Keputusan AKU menunjukkan bahawa penyumbang utama pencemaran udara di Semenanjung Malaysia adalah disebabkan oleh pembakaran bahan api fosil melalui aktiviti perindustrian, pengangkutan dan sistem pertanian. Empat model KRL menunjukkan bahawa PM10 bertindak sebagai penyumbang utama kepada pencemaran udara Malaysia. Dari kajian ini, ia dapat membuktikan bahawa penggunaan teknik kemometrik boleh memberikan maklumat yang bermakna terhadap kebolehubahan ruang bagi data yang besar dan kompleks. Kajian yang lebih jelas mengenai kualiti udara dan rangkaian pemantauan reka bentuk kualiti udara yang baru dalam pengurusan pencemaran udara yang lebih baik dapat dicapai melalui kaedah-kaedah tersebut.

 

Kata Kunci:  kualiti udara, kemometrik, pengenalan corak, Semenanjung Malaysia

 

References

1.       Moustris, K.P., Ziomas, I.C. and Paliatsos, A.G. (2010).  3-day-ahead forecasting of regional pollution index for the pollutants NO2, CO, SO2, and O3 using artificial neural networks in Athens, Greece. Water, Air & Soil Pollution 209(1-4): 29-43.

2.       Azid, A., Juahir, H., Toriman, M. E., Endut A., Kamarudin, M. K. A., Rahman, M. N. A., Hasnam, C. N. C., Saudi, A. S. M. and Yunus, K. (2015).  Source Apportionment of Air Pollution: A Case Study In Malaysia.  Jurnal Teknologi 72(1): 83-88.

3.       Lu, W. Z., He, H. D. and Dong, L. Y. (2011). Performance assessment of air quality monitoring networks using principal component analysis and cluster analysis. Building and Environment 46: 577-583.

4.       Simeonov, V., Einax, J.W., Stanimirova, I. and Kraft, J. (2002).  Envirometric modeling and interpretation of river water monitoring data. Analytical and Bioanalytical Chemistry 374: 898–905.

5.       Mutalib, S. N. S. A., Juahir, H., Azid, A., Sharif, S. M., Latif, M. T., Aris, A.Z., Zain, S. M. and Dominick, D. (2013).  Spatial and temporal air quality pattern recognition using chemometrics techniques: a case study in Malaysia.  Environmental Sciences: Processes & Impact 15(9): 1717-1728.

6.       Kannel, P. R., Lee, S., Kanel, S. R. and Khan, S. P. (2007).  Chemometrics application in classification and assessment of monitoring locations of an urban river system.  Analytical Chimica Acta 582: 390-399.

7.       Satheeshkumar, P. and Khan, A.B. (2011). Identification of mangrove water quality by multivariate statistical analysis methods in Pondicherry coast, India. Environment Monitoring Assessment 184(6): 3761-3774.

8.       Singh, K.P., Malik, A. and Sinha, S. (2005). Water quality assessment and apportionment of pollution sources of Gomti River (India) using multivariate statistical techniques: A case study. Analytica Chimica Acta 35: 3581–3592.

9.       Giri, D., Murthy, V.K., Adhikary, P.R. and Khanal, S.N. (2007).  Cluster analysis applied to atmospheric PM10 concentration data for determination of sources and spatial patterns in ambient air-quality of Kathmandu Valley.  Current Science.  93(5): 684-688.

10.    Kaufman, L and Rousseeuw, P.J. (I990). Finding Groups in Data. Wiley Interscience, New York.

11.    Ibarra-Berastegi, G., Sáenz, I., Ezcurra, A., Ganzedo, U., Argendoña, J.D., Errasti, I.,Farnandez – Ferrero, A. and Polanco – Martínez, J. (2009). Assessing spatial variability of SO2 field as detected by an air quality network using self-organizing maps, cluster, and principal component analysis. Atmospheric Environment. 43: 3829–3836.

12.    Juahir, H., Zain, S.M., Yusoff, M.K., Hanidza, T.I.T., Armi, A.S.M., Toriman, M.E. and Mokhtar, M. (2011). Spatial water quality assessment of Langat River Basin (Malaysia) using chemometrics techniques. Environment Monitoring Assessment 173: 625-641.

13.    Saithanu, K. & Mekpatyup, J. (2014).  Air quality assessment in the urban areas with multivariate statistical analysis at the east of Thailand.  International Journal of Pure and Applied Mathematics.  9(2): 169-177.

14.    Shrestha, S. and Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling & Software 22: 464–475.

15.    Manjunath, B.G., Frick, M. and Reiss, R.D. (2012). Some Notes on Extremal Discriminant Analysis. Journal of Multivariate Analysis. 103: 107–115.

16.    Johnson, R.A. and Wichern, D.W. (1992). Applied multivariate statistical analysis. 3rd ed. Prentice-Hall Int.: New Jersey.

17.    Hopke, P.K. (1985).  Receptor modelling in environmental chemistry. New York: Wiley.

18.    Singh, K.P., Malik, A., Mohan, D. and Sinha, S. (2004). Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India): A case study. Water Research 38: 3980–3992.

19.    Yu, T.Y. and Chang, L.F.W (2000). Selection of the scenarios of ozone pollution at southern Taiwan area utilizing principal component analysis. Atmospheric Environment 34: 4499-4509.

20.    Liu, C.W., Lin, K.H. and Kuo,Y.M. (2003). Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. The Science of the Total Environment 313, 77–89.

21.    Azid, A., Juahir, H., Toriman, M.E., Kamarudin, M.K.A., Saudi, A.S.M., Hasnam, C.N.C., Aziz, N.A.A., Azaman, F., Latif, M.T., Zainuddin, S.F.M., Osman, M.R. & Yamin, M. (2014).  Prediction of the Level of Air Pollution Using Principal Component Analysis and Artificial Neural Network Techniques: a Case Study in Malaysia. Water Air Soil Pollution. 225: 2063. 

22.    Pai, T.Y., Sung, P.J., Lin, C.Y., Leu, H.G., Shieh, Y.R., Chang, S.C., Chen, S.W. and Jou, J.J. (2009). Predicting hourly ozone concentration in Dali area of Taichung Country based on multiple linear regression method.  International Journal of Applied Science and Engineering 7(2): 127-132.

23.    Ul-Saufie, A.Z., Ahmad Shukri, Y., Nor Azam, R. and Hazrul, A.H. (2011).  Comparison between multiple linear regression and feed forward back propagation neural network models for predicting PM10 concentration level based on gaseous and meteorological parameters.  International Journal of Applied Science and Technology 1(4): 42-49.

24.    Azid, A., Juahir, H., Ezani, E., Toriman, M.E., Endut, A., Rahman, M.N.A., Yunus, K., Kamarudin, M.K.A., Hasnam, C.N.C., Saudi, A.S.M. and Umar, R. (2015).  Identification source of variation on regional impact of air quality pattern using chemometrics. Aerosol and Air Quality Research:

25.    Aertsen, W., Kinta, V., Orshovena, J., Özkan, K. and Muysa, B. (2010).  Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests.  Ecological Modelling 221: 1119-1130.

26.    Dominick, D., Juahir, H., Latif, M.T., Zain, S.M. and Aris, A.Z. (2012).  Spatial assessment of air quality patterns in Malaysia using multivariate analysis.  Atmospheric Environment 60: 172-181.

27.    Azid, A., Juahir, H., Latif, M.T., Zain, S.M. and Osman, M.R. (2013). Feed-Forward Artificial Neural Network Model for Air Pollutant Index Prediction in the Southern Region of Peninsular Malaysia. Journal Environmental Protection 4: 1-10.

28.    Mukhopadhyay, K. and Forssell, O. (2005). An empirical investigation of air pollution from fossil fuel combustion and its impact on health in India during 1973–1974 to 1996–1997. Ecological Economics 55: 235 – 250.

29.    Koppmann, R. (2007). Volatile organic compounds in the atmosphere. Singapore: Blackwell Publishing Ltd.

30.    De-Vries, W., Butterbach B.K., Denier V.D.G.H. and Oenema, O. (2006). The impact of atmospheric nitrogen deposition on the exchange of carbon dioxide, nitrous oxide and methane from European forests. Global Change Biology 12: 1151–1173.

31.    Simmonds, P.G., Manning, A.J., Derwent, R.G., Ciais, P., Ramonent, M., Kazan, V. and Ryall, D. (2005). A burning question. Can recent growth rate anomalies in the greenhouse gases by attributed to large-scale biomass burning events? Atmospheric Environment 39: 2513–2517.

32.    Demuzere, M., Trigo, R.M., Vila-Guerau, D.A.J. and Van L.N.P.M. (2009). The impact of weather and atmospheric circulation on O3 and PM10 levels at a rural mid-latitude site. Atmospheric Chemistry and Physics 9: 2695-2714.

33.    Azid, A., Juahir, H., Aris, A.Z., Toriman, M.E., Latif, M.T., Zain, S.M., Yusof, K.M.K.K. and Saudi, A.S.M. (2014). Spatial analysis of the air pollutant index in the Southern Region of Peninsular Malaysia using Environmetric Techniques. In From Sources to Solution, Proceeding of the International Conference on Environmental Forensics 2013, Aris, A.Z., Ismail, T.H.T., Harun, R., Abdullah, A.M. and Ishak, M.Y. (Eds.), Springer, New York, pp 307.

34.    Giorgi, F. and Meleux, F. (2007). Modelling the regional effects of climate change on air quality. C. R. Geoscience 339: 721–733.

35.    Romieu, I. and Hernandez, M. (1999). Air pollution and health in developing countries: review of epidemiological evidence. In: Mc Granahan, G., Murray, F. (Eds.), Health and Air Pollution in Rapidly Developing Countries. Stockholm Environment Institute, Sweden, pp 43 – 66.

36.    Elminir, H. (2005).  Dependence of urban air pollutants on meteorology. Science of Total Environment  350: 225–237.

 




Previous                    Content                    Next