Malaysian Journal of Analytical Sciences Vol 19 No 6 (2015): 1431 - 1447

 

 

 

THE INFLUENCE OF TIDAL ACTIVITIES ON WATER QUALITY OF MARANG RIVER, TERENGGANU, MALAYSIA

 

(Pengaruh Aktiviti Pasang Surut Terhadap Kualiti Air Sungai Marang, Terengganu, Malaysia)

 

Muhaammad Barzani Gasim*, Nur Hidayah Ariffin, Haniff Muhamad, Norsyuhada Hairoma

 

East Coast Environmental Research Institute (ESERI),

Universiti Sultan Zainal Abidin,

Gong Badak Campus, 21300 Kuala Terengganu, Terengganu, Malaysia

 

*Corresponding author: drbarzani@gmail.com

 

 

Received: 14 April 2015; Accepted: 9 July 2015

 

 

Abstract

A study was conducted at seven sampling stations to determine water quality condition of Marang River, Terengganu. Each station was 2 km apart from each other, the first sampling was in 13 November 2012 and was repeated in 24 November 2013. The aim of the study is  to determine water quality in spatial and temporal variation on different tides based on selected fourteen physicochemical parameters with regard to National Water Quality Standard. Six in-situ parameters such as pH, temperature, salinity, conductivity, DO and TDS were measured by using YSI 556 Multiparameters. Six ex-situ parameters such as sulphate, sodium, nitrate, phosphate, magnesium and turbidity also were measured. Sulphate, nitrate, phosphate and turbidity were analysed according to the standard method of analysis by Portable Datalogging Spectrophotometer HACH DR/2010. Sodium and magnesium were analysed using Atomic Absorption Spectrophotometer. One way ANOVA shows that there are no significant changes between first sampling and second sampling, the data were average to give impression of water quality of Marang River in spatial and temporal perspective. Overall, water quality of Marang River was classified as class I to III according to NWQS classification, therefore Marang River needs proper water treatment for tolerant fish species and other aquatic water continuance.

 

Keywords: Marang River, rainy season, dry season,water quality parameter

 

Abstrak

Satu kajian telah dijalankan di tujuh stesen persampelan untuk menentukan keadaan kualiti air Sungai Marang, Terengganu. Setiap stesen berjarak 2 km diantara satu sama lain, pensampelan pertama pada 13 November 2012 dan diulang pada 24 November 2013. Tujuan kajian ini adalah untuk menentukan kualiti air di dalam variasi ruang dan masa diantara laut pasang dan surut berdasarkan empatbelas parameter fizikokimia terpilih dengan mengambil kira Piawaian Kualiti Air Kebangsaan. Enam in-situ parameter seperti pH, suhu, kemasinan, kekonduksian, DO dan TDS diukur dengan menggunakan Multiparameter YSI 556. Enam parameter ex-situ seperti sulfat, sodium, nitrat, fosfat, magnesium dan kekeruhan juga diukur. Sulfat, nitrat, fosfat dan kekeruhan dianalisis mengikut kaedah standard analisis oleh Portable Datalogging Spectrophotometer Hach DR / 2010. Natrium dan magnesium dianalisis menggunakan Spektrofotometer Penyerapan Atom. ANOVA satu hala menunjukkan bahawa tiada perubahan yang signifikan di antara persampelan pertama dan persampelan kedua, data yang rata-rata untuk memberi gambaran kualiti air Sungai Marang dalam perspektif ruang dan masa. Secara keseluruhan, kualiti air Sungai Marang diklasifikasikan sebagai kelas I hingga III mengikut pengkelasan NWQS, oleh itu air Sungai Marang perlu melalui rawatan yang sesuai bagi memastikan air yang toleran bagi kelangsungan spesies ikan dan hidupan air yang lain.

 

Kata kunci: Sungai Marang, musim hujan, musim kering, parameter kualiti air

 

References

1.       Li, Y. P., Huang, G. H. and Nie, S. L. (2010). Planning water resources management systems using a fuzzy-boundary interval-stochastic programming method.

2.       Davies, E. G. R. and Simnovic, S. P. (2011). Global water resources modeling with an intedrated model of the social economic-environmental system. Journal of Advances in Water Resources 34(6): 684-700.

3.       Li, L., Barry, D.A., Stagnitti, F., Parlange, J.Y. and Jeng, D.S. (2000). Beach water table fluctuations due  to spring–neap tides: moving boundary effects. Advances in Water Resources 23(8): 817-824.

4.       Rosli, N. A., Zawawi, M. H. and Bustami, R. A. (2011). Salak river water quality identification and classification according to physic-chemical characteristics. Proceeding Engineering 50: 69-77.

5.       Ravenscroft, N. O. M. and Beardall, C. H. (2003). The importance of freshwater flows over estuarine mudflats for wintering waders and wildfowl. Journal of Biological Conservation 113(1): 89-97.

6.       Al-Shami, S. A. Rawi, C. S. M., Ahmad, A. H., Hamid, S. A. and Nor, S. A. M. (2011). Influence of agricultural, industrial, and anthropogenicstresses on the distribution and diversity of macroinvertebrates in Juru River Basin, Penang, Malaysia. Ecotoxicology and Environmental Safety 74: 1195-1202.

7.       Taner, M. U., Ustun, B. and Erdincler, A. (2011). A simple tool for the assessment of water quality in polluted lagoon systems: A case study for Kucukcekmece Lagoon, Turkey. Ecological Indicators 11: 749-756.

8.       Mannina, G. and Viviani, G. (2010). Water quality modelling for ephemeral rivers: model development and parameter assessment. Journal of Hydrology 393: 186-196.

9.       Wilby, R. L., Orr, H., Watts, G., Battarbee, R.W., Berry, P.M., Chadd, R., Dugdale, S.J., Elliott, J. A., Extence, C., Hannah, D. M., Holmes, N., Johnson, A. C., Knights, B.,Milner, N. J., Ormerod, S. J., Solomon, D., Timlett, R., Whitehead, P. J. and Wood, P. J. (2010). Evidence needed to manage freshwater ecosystems in a changing climate: Turning adaptation principles into practice.

10.    Hayrol Azril, Mohamed Shaffril, Bahaman Abu Samah, D’Silva, J. L. &Uli. J. (2011).

11.    Kumar, P. K. D., Kumar, S. P., Roshin, R. P., Narvekar, J. and Vivekanandan, E. (2009). Response of the Arabian Sea to global warming and associated regional climateshift. Journal of Marine Environment 68: 217-222.

12.    Meyssignac, B., Calafat, F. M., Somot, S., Rupolo, V., Stocchi, P., Llovel, W. and Cazenave, A. (2011). Two-dimensional reconstruction of the Mediterranean Sea level over 1970-2006 from tide gage data and regional ocean circulation model outputs. Journal of Global and Planetary Change 77(1-2): 49-61.

13.    Werner, A. D., Bakker, M., Post, V. E. A., Vandenbohede, A., Lu, C., Ashtiani, B. A., Simmons, C. T. and Barry, D. A. (2012). Seawater intrusion processes, investigation and management: recent advances and future challenges. Journal of Advances in Water Resources.

14.    Marghany, M. (2003). ERS-1 modulation transfer function impact on shoreline change model. Journal of Applied Earth Observation and Geoinformation 4: 279-294.

15.    French, C. R., Carr, J. J., Dougherty, E. M., Eidson, L. A. K., Reynolds, J. C. and Degrandpre, M. D. (2002). Spectrophotometric pH measurements of freshwater.

16.    Bayson, E., Atli, G., Gurler, C. O., Dogan, Z., Eroglu, A., Kocalar, K. and Canli, M. (2012). The effects of increased freshwater salinity in the biodisponibility of metals (Cr, Pb) and effects on antioxidant systems of Oreochromisniloticus.

17.    Nielsen, D. L., Brock, M. A., Ress, G. N. and Baldwin, D. S. (2003). Effects of increasing salinity on freshwater ecosystems in Australia. Journal of Botany 51: 655-665.

18.    Li, X. D., Liu, C. Q., Liu, X. L. and Bao, L. R. (2011). Identification of dissolved sulfate sources and the role of sulfuric acid in carbonate weathering using dual-isotopic data from the Jialing River, Southwest China. Journal of Asian Earth Science 42: 370-380.

19.    WHO. (2003).Guidelines for Drinking Water Quality. Geneva: World Health Organization.

20.    Soucek, D. J. (2007). Sodium sulfate impacts feeding, specific dynamic action, and growth rate in the freshwater bivalve Corbiculafluminea. Journal of Aquatic Toxicology 83: 315-322.

21.    Camargo, J. A., Alonso, A. and Salamanca, A. (2005). Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Journal of Chemosphere 58: 1255-1267.

22.    Shyla, B., Mahadevaiah and Nagendrappa, G. (2011). A simple spectrophotometric method for the determination of phosphate in soil, detergents, water, bone and food samples through the formation of phosphomolybdate complex followed by its reduction with thiourea. Journal of  Molecular and Biomolecular  Spectroscopy 78(1): 497-502.

23.    Nakamura, H., Tanaka, H., Hasegawa, M., Masuda, Y., Arikawa, Y., Nomura, Y., Ikebukuro, K. and Karube, I. (1999). An automatic flow-injection analysis system for determining phosphate ion in river water using pyruvate oxidase G from from Aerococcusviridans. Journal of Talanta 50(4): 799-807.

24.    George, B., Kumar, J. I. N. and Kumar, R. N. (2012). Study on the influence of hydro-chemical parameters on phytoplankton distribution along Tapi estuarine area of Gulf of Khambat, India. Journal of Aquatic Research 38: 157-170.

25.    Lee, B. J., Jaroszewska, M., Dabrowski, K., Czesny, S. and Rinchard, J. (2012). Effects of dietary vitamin B1 (thiamine) and magnesium on the survival, growth and histological indicators in lake trout (Salvelinusnamaycush) juveniles.

26.    Prathumratana, L., Sthiannopkao, S. and Kim, K. W. (2008). The relationship of climatic and hydrological parameters to surface water quality in the lower Mekong River. Environment International 34: 960-866.

 




Previous                    Content                    Next