Malaysian Journal of Analytical Sciences Vol 19 No 6 (2015): 1187 - 1193

 

 

 

GREEN SYNTHESIS OF SILVER NANOPARTICLES USING RHIZHOME EXTRACT OF GALANGAL, Alpinia galangal

 

(Sintesis Hijau Nanopartikel Perak Menggunakan Ekstrak Rizom Lengkuas, Alpinia galanga)

 

Alyza A. Azmi1* and Norhidayah M. Ahyat2

 

1School of Fundamental Sciences

2School of Marine and Environmental Science

Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

 

*Corresponding author: alyza.azzura@umt.edu.my

 

 

Received: 9 December 2014; Accepted: 16 October 2015

 

 

Abstract

A simple method of synthesizing silver nanoparticles (AgNps) using rhizome extract of galangal, Alpinia galangal was presented. Antioxidant contains in galangal served as greener and stable reducing agents in this one-pot synthesis. The antioxidant from galangal was extracted in water at ambient environment and quantitative analysis of antioxidant content was carried out using Total Phenolic Content (TPC) assay. Fourier-Transform Infrared (FTIR) spectroscopy analysis confirmed the presence of ʋ(O-H), ʋ(C=C) and ʋ(C-O) peaks that contributed from polyphenol groups stretching vibrations. The formation of AgNps was tracked by ultraviolet-visible spectrophotometer through the presence of absorption peak at 430 nm, while the morphology and crystallinity of AgNps were determined by Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD) analyses. The results from this study prove that antioxidants found in galangal rhizome extract act as effective reducing agent in the synthesis of AgNps.

 

Keywords: green synthesis, silver nanoparticles, galangal, plant extract, total phenolic content

 

Abstrak

Kajian ini membentangkan satu kaedah yang mudah dalam sintesis nanopartikel perak menggunakan extrak rizom lengkuas, Alpinia galangal. Kandungan antioksidan di dalam lengkuas bertindak sebagai agen penurunan yang lebih hijau dan stabil bagi sintesis satu-pot. Antioksidan daripada lengkuas diekstrak menggunakan air pada persekitaran ambien dan analisis kuantitatif bagi kandungan antioksidan telah dijalankan mengguknakan ujian jumlah kandungan fenolik. Analisis spektroskopi Fourier Inframerah mengesahkan kehadiran puncak-puncak  ʋ(O-H), ʋ(C=C) dan ʋ(C-O) yang disumbangkan oleh getaran regangan kumpulan polifenol. Pembentukan nanopartikel perak dikesan menggunakan spektrofotometer ultralembayung-nampak menerusi kehadiran puncak serapan pada 430 nm, manakala morfologi dan kristaliniti nanopartikel perak ditentukan oleh analisis imbasan elektron mikroskopi dan X-ray pembelauan. Keputusan-keputusan daripada kajian ini membuktikan antioksidan yang dijumpai di dalam ekstrak  rizom lengkuas bertindak sebagai agen penurunan yang efektif di dalam sintesis nanopartikel perak.

 

Kata kunci: sintesis hijau, nanopartikel perak, lengkuas, ekstrak tumbuhan, jumlah kandungan fenolik

 

References

1.       Patra, S., Mukherjee, S., Barui, A. K., Ganguly, A., Sreedhar, B. and Patra, C. R. (2015). Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics, Mater. Sci. Eng. C., 53: 298–309.

2.       Ahmed, K. B. A., Senthilnathan, R., Megarajan, S. and Anbazhagan, V. (2015). Sunlight mediated synthesis of silver nanoparticles using redox phytoprotein and their application in catalysis and colorimetric mercury sensing. J. Photochem. Photobiol. B Biol., 151: 39–45.

3.       Sinha, T. and Ahmaruzzaman, M. (2015). High-value utilization of egg shell to synthesize Silver and Gold–Silver core shell nanoparticles and their application for the degradation of hazardous dyes from aqueous phase-A green approach. J. Colloid Interface Sci., 453: 115–131.

4.       Boroumand, M. N., Montazer, M., Simon, F., Liesiene, J.,  Šaponjic, Z. and Dutschk, V. (2015). Novel method for synthesis of silver nanoparticles and their application on wool.  Appl. Surf. Sci., 346: 477–483.

5.       Navaladian, S., Viswanathan, B.,  Viswanath, R. P.  and Varadarajan, T. K. (2007). Thermal decomposition as route for silver nanoparticles. Nanoscale Res. Lett., 2 (1): 44–48.

6.       Huang, N. M., Radiman, S., Lim, H. N., Khiew, P. S., Chiu, W. S., Lee, K. H.,  Syahida, A., Hashim, R. and Chia, C. H. (2009). γ-Ray assisted synthesis of silver nanoparticles in chitosan solution and the antibacterial properties. Chem. Eng. J., 155 (1–2): 499–507.

7.       Amendola, V., Polizzi, S. and Meneghetti, M. (2007). Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization. Langmuir, 23 (12): 6766–6770.

8.       Bogle, K. A.,  Dhole, S. D. and Bhoraskar, V. N. (2006). Silver nanoparticles: synthesis and size control by electron irradiation. Nanotechnology, 17(13): 3204–3208.

9.       Shameli, K., Ahmad, M., Zamanian, A., Sangpour, P., Shabanzadeh, P., Abdollahi, Y. and Zargar, M. (2012). Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder. Int. J. Nanomedicine, 7: 5603–5610.

10.    Philip, D. (2010). Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Phys. E Low-Dimensional Syst. Nanostructures, 42(5): 1417–1424.

11.    Edison, T. J. I. and Sethuraman, M. G. (2013). Biogenic robust synthesis of silver nanoparticles using Punica granatum peel and its application as a green catalyst for the reduction of an anthropogenic pollutant 4-nitrophenol. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., 104: 262–264.

12.    Mochochoko, T., Oluwafemi, O. S., Jumbam, D. N. and Songca, S. P. (2013). Green synthesis of silver nanoparticles using cellulose extracted from an aquatic weed; Water hyacinth. Carbohydr. Polym., 98(1): 290–294.

13.    Ahluwalia, V., Kumar, J., Sisodia, R., Shakil, N. A. and  Walia, S. (2014). Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind. Crops Prod., 55: 202–206.

14.    Roopan, S. M., Rohit, Madhumitha, G., Abdul Rahuman, A., Kamaraj, C. and Barathi, A. (2013). Low-cost and Eco-friendly Phyto-synthesis of Silver Nanoparticles using Cocosnucifera Coir Extract and its Larvicidal Activity. Ind. Crops Prod., 43: 631-635.

 




Previous                    Content                    Next