Malaysian Journal of Analytical Sciences Vol 19 No 6 (2015): 1194 - 1204

 

 

 

APPLICATION OF CARRIER ELEMENT-FREE CO-PRECIPITATION METHOD FOR Ni(II), Cu(II) AND Zn(II) IONS DETERMINATION IN WATER SAMPLES USING CHRYSIN

 

(Penggunaan Kaedah Ko-Pemendakan Bebas Elemen Pembawa Untuk Penentuan Ion Ni(II), Cu(II) Dan Zn(II) Dalam Sampel Air Menggunakan Krisin)

 

Layth Imad Abd Ali1, Wan Aini Wan Ibrahim1,2*, Azli Sulaiman1, Mohd Marsin Sanagi3

 

1Separation Science and Technology Group, Department of Chemistry, Faculty of Science

2Frontier Materials Research Alliance

3Ibnu Sina Institute for Scientific & Industrial Research

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

 

*Corresponding author: wanaini@kimia.fs.utm.my; waini@utm.my

 

 

Received: 9 December 2014; Accepted: 16 October 2015

 

 

Abstract

A co-precipitation method was developed to separate and pre-concentrate Ni(II), Cu(II) and Zn(II) ions using an organic co-precipitant, chrysin without adding any carrier element termed as carrier element-free co-precipitation (CEFC).  Analytes were determined using flame atomic absorption spectrometry (FAAS). The influence of analytical conditions, such as pH of the solution, quantity of co-precipitant, standing time, centrifugation rate and time, sample volume, and interference of concomitant ions were investigated over the recovery yields of the trace metals. The limit of detection, the limit of quantification and linearity range obtained from the FAAS measurements were found to be in the range of  0.64 to 0.86 µg L–1, 2.13 to 2.86 μg L–1 and 0.9972 to 0.9989 for Ni(II), Cu(III) and Zn(II) ions, respectively. The precision of the method, evaluated as the relative standard deviation (RSD) obtained after analyzing a series of 10 replicates, was between 2.6% to 3.9% for the trace metal ions. The proposed procedure was applied and validated by analyzing river water reference material for trace metals (SLRS-5) and spiking trace metal ions in some water samples.  The recoveries of the analyte metal ions were between 94.7-101.2%.

 

Keywords: Carrier element-free coprecipitation, Preconcentration, Chrysin, Trace metal ions, FAAS

 

Abstrak

Suatu kaedah ko-pemendekan telah dibangunkan untuk pemisahan dan pra-pemekatan ion Ni(II), Cu(II) dan Zn(II) menggunakan ko-pemendak organik, krisin tanpa penambahan sebarang elemen pembawa,  dikenali sebagai ko-pemendakan bebas elemen pembawa (CEFC).  Analit ditententukan menggunakan spektrometri serapan atom nyala (FAAS).  Pengaruh keadaan analisis, seperti pH larutan, kuantiti ko-pemendak, masa berdiri, kadar dan masa pengemparan, isipadu sampel, dan gangguan ion iringan telah dikaji ke atas hasil perolehan semula logam surih.  Had pengesanan, had kuantitatif dan julat kelinearan yang diperoleh daripada pengukuran FAAS ialah antara 0.64 - 0.86 µg L–1, 2.13 - 2.86 μg L–1 dan 0.9972 - 0.9989, masing-masing untuk ion Ni(II), Cu(III) and Zn(II).  Kepresisan kaedah yang dibangunkan telah dinilai berdasarkan sisihan piawai relatif (RSD) yang diperoleh setelah menganalisis 10 replikat sampel (2.6-3.9%) untuk ion logam surih.  Prosedur cadangan telah digunakan dan ditentusahkan dengan menganalisis bahan air sungai rujukan untuk logam surih (SLRS-5) dan menambahkan ion logam surih ke dalam beberapa sampel air.  Perolehan semula analit ion logam ialah antara 94.7-101.2%.

 

Kata kunci: Ko-pemendakan bebas elemen pembawa, pra-pemekatan, krisin, ion logam surih, FAAS

 

References

1.       Ge, F., Li, M.M., Ye, H. and Zhao, B.X. (2012). Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J. Hazard. Mater. 211–212: 366-372.

2.       Kumar, R., Barakat, M. A., Daza, Y. A., Woodcock, H. L. and Kuhn, J. N. (2013). EDTA functionalized silica for removal of Cu(II), Zn(II) and Ni(II) from aqueous solution. J. Colloid Interface Sci. 408: 200-205.

3.       Saracoglu, S., Saygi, K. O., Uluozlu, O. D., Tuzen, M. and Soylak, M. (2007). Determination of trace element contents of baby foods from Turkey. Food Chem. 105 (1): 280-285.

4.       Bulut, V. N., Duran, C., Gundogdu, A., Soylak, M., Yildirim, N. and Elci, L. (2008). A new approach to separation and pre-concentration of some trace metals with co-precipitation method using a triazole. Talanta, 76 (2): 469-474.

5.       Uluozlu, O. D., Tuzen, M., Mendil, D., Kahveci, B. and Soylak, M. (2009). l-4-(p-chlorobenzyli  denamino-4,5-dihydro-1H-1,2,4-triazol-5-one (EPHBAT) as precipitant for carrier element free coprecipitation and speciation of chromium(III) and chromium(VI). J. Hazard. Mater. 172 (1):  395-399.

6.       Duran, C., Gundogdu, A., Bulut, V. N., Soylak, M., Elci, L., Sentürk, H. B. and Tüfekci, M. (2007). Solid-phase extraction of Mn(II), Co(II), Ni(II), Cu(II), Cd(II) and Pb(II) ions from environmental samples by flame atomic absorption spectrometry (FAAS). J. Hazard. Mater. 146 (1–2): 347-355.

7.       Bahadır, Z., Bulut, V. N., Ozdes, D., Duran, C., Bektas, H. and Soylak, M. (2014). Separation and preconcentration of lead, chromium and copper by using with the combination coprecipitation-flame atomic absorption spectrometric determination. J. Ind. Eng. Chem. 20 (3): 1030-1034.

8.       Liu, Y., Ingle, J. D. (1989). Automated on-line ion-exchange trace enrichment system with flame atomic absorption detection. Anal. Chem. 61 (6): 520-524.

9.       Ali, L. I. A., Wan Ibrahim, W. A., Sulaiman, A. and Sanagi, M. M. (2014). Adsorption Studies of Nickel (II) Metal Ions Uptake Using Fe3O4 Magnetic Nanoadsorbent. J. Teknol. 71 (5): 99-10.

10.    Klapiszewski, Ł., Bartczak, P., Wysokowski, M., Jankowska, M., Kabat, K. and Jesionowski, T. (2015). Silica conjugated with kraft lignin and its use as a novel ‘green’ sorbent for hazardous metal ions removal. Chem. Eng. J. 260: 684-693.

11.    Raju, B., Kumar, J. R., Lee, J.Y., Kwonc, H.S., Kantam, M. L. and Reddy, B. R. (2012). Separation of platinum and rhodium from chloride solutions containing aluminum, magnesium and iron using solvent extraction and precipitation methods. J. Hazard. Mater. 227–228: 142-147. 

12.    Chu, H., He, L., Jiang, Q., Fang, Y., Jia, Y., Yuan, X., Zou, S., Li, X., Feng, W., Yang, Y., Liu, N., Luo, S., Yang, Y., Yang, L. and Yuan, L. (2014). CMPO-calix[4]arenes with spacer containing intramolecular hydrogen bonding: Effect of local rigidification on solvent extraction toward f-block elements. J. Hazard. Mater. 264: 211-218.  

13.    Divrikli, U., Kartal, A. A., Soylak, M. and Elci, L. (2007). Preconcentration of Pb(II), Cr(III), Cu(II), Ni(II) and Cd(II) ions in environmental samples by membrane filtration prior to their flame atomic absorption spectrometric determinations. J. Hazard. Mater. 145 (3): 459-464. 

14.    Urgun-Demirtas, M., Benda, P. L., Gillenwater, P. S., Negri, M. C., Xiong, H. and Snyder, S. W. (2012). Achieving very low mercury levels in refinery wastewater by membrane filtration. J. Hazard. Mater.  215–216: 98-107.

15.    Krawczyk, M., Jeszka-Skowron, M. and Matusiewicz, H. (2014). Sequential multi-element determination of iron and zinc in water samples by high-resolution continuum source graphite furnace atomic absorption spectrometry after column solid-phase extraction onto multiwalled carbon nanotubes. Microchem. J. 117: 138-143.

16.    Wan Ibrahim, W. A., Abd Ali, L. I., Sulaiman, A., Sanagi, M. M. and Aboul-Enein, H. Y. (2014). Application of Solid-phase Extraction for Trace Elements in Environmental and Biological Samples: A Review. Crit. Rev. Anal. Chem. 44 (3): 233-254.

17.    Es'haghi, Z., Heidari, T. and Mazloomi, E. (2014). In situ pre-concentration and voltammetric determination of trace lead and cadmium by a novel ionic liquid mediated hollow fiber-graphite electrode and design of experiments via Taguchi method. Electrochim. Acta. 147: 279-287. 

18.    Kamal, A., Kumar, K., Kumar, V. and Mahajan, R. K. (2014). Electrochemical and Chromogenic Sensors Based on Ferrocene Appended Chalcone for Selective Quantification of Copper (II). Electrochim. Acta. 145: 307-313.

19.    Feist, B., Mikula, B., Pytlakowska, K., Puzio, B. and Buhl, F. (2008). Determination of heavy metals by ICP-OES and F-AAS after preconcentration with 2,2′-bipyridyl and erythrosine. J. Hazard. Mater. 152 (3): 1122-1129.

20.    Feist, B., Mikula, B. (2014). Preconcentration of some metal ions with lanthanum-8-hydroxyquinoline co-precipitation system. Food Chem. 147: 225-229.

21.    Soylak, M., Saracoglu, S., Divrikli, U. and Elci, L. (2005). Coprecipitation of heavy metals with erbium hydroxide for their flame atomic absorption spectrometric determinations in environmental samples. Talanta, 66 (5): 1098-1102.

22.    Citak, D., Tuzen, M. and Soylak, M. (2009). Simultaneous coprecipitation of lead, cobalt, copper, cadmium, iron and nickel in food samples with zirconium(IV) hydroxide prior to their flame atomic absorption spectrometric determination. Food Chem. Toxicol. 47 (9): 2302-2307.

23.    Soylak, M., Aydin, A. (2011). Determination of some heavy metals in food and environmental samples by flame atomic absorption spectrometry after coprecipitation. Food Chem. Toxicol. 49 (6): 1242-1248.

24.    Elçi, L., Soylak, M. and Özcan, B. (2003). Coprecipitation of Cu(II), Ni(II), Fe(III), Cd(II), Pb(II), and Co(II) in Wastewater, Sediment, and Metallic Zinc Samples with HMDTC–HMA for Flame Atomic Absorption Spectrometric Determination. Anal. Lett. 36 (5): 987-999.

25.    Mulazmoglu, I. E., Solak, A. O. (2011). A novel apigenin modified glassy carbon sensor electrode for the determination of copper ions in soil samples. Anal. Methods. 3 (11): 2534-2539.

26.    Wong, S. P., Leong, L. P. and William Koh, J. H. (2006). Antioxidant activities of aqueous extracts of selected plants. Food Chem. 99 (4): 775-783.

27.    Quideau, S., Deffieux, D., Douat-Casassus, C. and Pouységu, L. (2011). Plant Polyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chem. Int. Ed. 50 (3): 586-621.

28.    Tufekci, M., Bulut, V., Elvan, H., Ozdes, D., Soylak, M. and Duran, C. (2013). Determination of Pb(II), Zn(II), Cd(II), and Co(II) ions by flame atomic absorption spectrometry in food and water samples after preconcentration by coprecipitation with Mo(VI)-diethyldithiocarbamate. Environ. Monit. Assess. 185 (2): 1107-1115.

29.    Duran, C., Ozdes, D., Akcay, H. T., Serencam, H. and Tufekci, M. (2015). Simultaneous separation and preconcentration of Cd(II), Co(II), and Ni(II) ions in environmental samples by carrier element-free wcoprecipitation method prior to their flame atomic absorption spectrometric determination. Desalin. Water Treat. 53 (2): 390-397. 

30.    Saracoglu, S., Soylak, M. (2010). Carrier element-free coprecipitation (CEFC) method for separation and pre-concentration of some metal ions in natural water and soil samples. Food Chem. Toxicol. 48 (5): 1328-1333.

31.    Duran, C., Ozdes, D., Sahin, D., Bulut, V. N., Gundogdu, A. and Soylak, M. (2011). Preconcentration of Cd(II) and Cu(II) ions by coprecipitation without any carrier element in some food and water samples. Microchem. J. 98 (2): 317-322.

32.    Bahadir, Z., Ozdes, D., Bulut, V. N., Duran, C., Elvan, H., Bektas, H. and Soylak, M. (2013). Cadmium and nickel determinations in some food and water samples by the combination of carrier element-free coprecipitation and flame atomic absorption spectrometry. Toxicol. Environ. Chem. 95 (5): 737-746.

33.    Cantle, J. E. (1982). Chapter 3 Practical techniques. In Techniques and Instrumentation in Analytical Chemistry, John Edward, C., Ed. Elsevier:, 5: 37-66. 




Previous                    Content                    Next