Malaysian Journal of Analytical Sciences Vol 20 No 1 (2016): 157 - 170

 

 

 

PENYEDIAAN DAN PENCIRIAN HIDROGEL BERASASKAN KANJI/AKRILAMIDA DARIPADA UBI Stemona curtisii

 

(Preparation and Characterization of Starch/Acrylamide-Based Hydrogel

from Stemona curtissi Tuber)

 

Lim Wun Pin, Airul Ashri, Muntaz Abu Bakar, Wan Yaacob Wan Ahmad, Mohd Azwani Shah Mat Lazim*

 

Pusat Pengajian Sains Kimia & Teknologi Makanan,

Fakulti Sains dan Teknologi

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: azwanlazim@ukm.edu.my

 

 

Received: 13 July 2015; Accepted: 11 January 2016

 

 

Abstrak

Dalam kajian ini, hidrogel berasaskan kanji daripada ubi Stemona curtisii disintesis melalui kaedah pempolimeran radikal bebas menggunakan penyinaran gelombang mikro. Dalam kajian ini terdapat 3 jenis hidrogel dengan nisbah kanji kepada akrilamida yang berbeza dianalisis iaitu 1:3, 1:4 dan 5:3.  Berdasarkan kepada ujian pembengkakan, hidrogel 1:3 mempunyai peratus pembengkakan paling tinggi dan ini dibuktikan dengan keputusan yang diperolehi daripada Mikroskop Pengimbas Elektron (SEM) di mana mikrograf SEM mempamerkan saiz liang pada hidrogel 1:3 adalah yang paling besar. Analisis menggunakan Spektroskopi Inframerah Transformasi Fourier-Jumlah Pantulan Teratenuat (ATR-FTIR) menunjukkan kehadiran puncak pada 1112 cm-1, 1152 cm-1 dan 1150 cm–1 pada hidrogel 1:4, 1:3 dan 5:3 masing-masing yang menandakan pembentukan ikatan C-O-C hasil daripada proses pempolimeran taut silang. Analisis menggunakan Difraktometer Sinar-X (XRD) pula menunjukkan bahawa ketiga – tiga jenis hidrogel adalah amorfus. Kalorimeter Pengimbas Kebedaan (DSC) pula memberikan maklumat bahawa semua bahan yang digunakan untuk sintesis hidrogel adalah pada tahap kebolehcampuran yang baik dan hidrogel 1:4 menunjukkan suhu peralihan kaca (Tg) yang paling tinggi. Daripada termogram TGA/DTG pula, hidrogel 5:3 didapati lebih stabil terhadap haba berbanding hidrogel yang lain. Keputusan ujian Tegangan menggunakan Mesin Ujian Universal (UTM) telah mendapati bahawa hidrogel berasaskan kanji Ubi Stemona curtisii yang disintesis mempunyai potensi untuk diaplikasikan sebagai pembalut luka. Dalam ujian ini, hidrogel 1:4 yang mempunyai kandungan kanji yang paling rendah telah menunjukkan nilai modulus elastik Young yang paling tinggi.

 

Kata kunci: Stemona curtisii, hidrogel, pempolimeran radikal bebas, gelombang mikro

 

Abstract

In this study, hydrogel based on starch of Stemona curtisii was synthesized via free radical polymerization method by using microwave irradiation. In this study, there were three type of hydrogels formulated with different type of starch to acryamide been anaylyzed which were 1:3, 1:4 and 5:3. Based on swelling test, hydrogel with 1:3 was reported to have the highest swelling percentage where this is prove by Scanning Electron Microscope result. The SEM micrograph shows that hydrogel 1:3 have the largest pores size compare to the other two types of hydrogels. The polymerization reaction has been proven to occur successfully based on the analysis using Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR). Cross-linking polymerization process was determine by the present of peak at  1112 cm-1, 1152 cm-1 and 1150 cm–1 in  hydrogels 1:4, 1:3 and 5:3 respectively which indicate the formation of C-O-C bond.X-Ray Diffractometer (XRD) results showed that all starch-based hydrogels were amorphous.  Differential Scanning Calorimeter (DSC) gave information that all the blending materials for hydrogel synthesis were of good miscibility and the hydrogel 1:4 was found to have the highest glass transition temperature. From the TGA/DTG thermogram, hydrogel 5:3 was reported to be more stable to heat as compared to other hydrogels. The results from Tensile test using Universal Testing Machine (UTM) have discovered that hydrogels based on the starch of Stemona curtisii possess a potential to be applied as wound dressing. In this test, hydrogel with the lowest starch content, 1:4 showed the highest Young’s elastic modulus value.

 

Keywords: Stemona curtisii, hydrogel, free radical polymerization, microwave

 

References

1.       Hartmann,  J. (1990). Absorbent Polymer Technology. The Netherlands: Elsevier Science Publishers B.V.

2.       Burkert, S., Schmidt, T., Gohs, U., Dorschner, H. and Arndt, K. F. (2007). Cross-linking of poly(N-vinyl pyrrolidone) films by electron beam irradiation. Radiation Physics and Chemistry 76(8-9): 1324 – 1328.

3.       Paulino, A. T., Guilherme, M. R., Reis, A.V., Campese, G. M., Muniz, E. C. and Nozaki, J. (2006). Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide. Journal of Colloid and Interface Science 301(1): 55 – 62.

4.       Singh, V., Tiwari, A., Pandey, S. and Singh, S. K. (2006). Microwave-accelerated synthesis and characterization of potato starch-g-poly(acrylamide). Starch - Stärke 58(10): 536 – 543.

5.       Yang, X. M., Liu, Q., Chen, X. L., Yu, F. and Zhu, Z. Y. (2008). Investigation of PVA/WS-chitosan hydrogels prepared by combined γ-irradiation and freeze-thawing. Carbohydrate Polymers 73(3): 401 – 408.

6.       Zainura (2010). Galak tua (Stemona) – Stemona tuberosa. http://wannura.wordpress.com/2010/01/22 /galak-tua-stemona-stemona-tuberosa-lour/ [9 November 2013].

7.       Zhao, W. M., Qin, G. W., Ye, Y., Xu, R. S. and Le, X. F. (1995). Bibenzyls from Stemona tuberosa. Phytochemistry 38(3): 711 – 713.

8.       Pandey, M. and Amin, M. C. I. M. (2012). Accelerated preparation of novel bacterial cellulose/acrylamide-based hydrogel by microwave irradiation. International Journal of Polymeric Materials and Polymeric Biomaterials 62(7): 402 – 405.

9.       Gulrez, S. K. H. and Al-Assaf, S. (2011). Hydrogels: Methods of preparation, characterisation and applications. Dlm. Carpi, P.A. (Ed.).  Progress in molecular and environmental bioengineering - from analysis and modeling to technology applications, United Kingdom: InTech Europe: pp 646.

10.    Dai, T., Qing, X., Wang, J., Shen, C. and Lu, Y. (2010). Interfacial polymerization to high-quality polyacrylamide/polyaniline composite hydrogels. Composites Science and Technology 70(3): 498 –503.

11.    Zobel, H. F., Young, S. N. and Rocca, L.A. (1988). Starch gelatination: An X-ray diffraction study. Cereal Chemistry 65(6): 443 – 446.

12.    Kenawy, E.-R., Kamoun, E. A., Mohy Eldin, M. S. and El-Meligy, M. A. (2013). Physically crosslinked poly(vinyl alcohol)-hydroxyethyl starch blend hydrogel membranes: Synthesis and characterization for biomedical applications. Arabian Journal of Chemistry 6(2): 1 – 9.

13.    Abd El-Mohdy, H. L., Hegazy, E. A., El-Nesr, E. M. and El-Wahab, M. A. (2012). Synthesis, characterization and properties of radiation-induced starch/(EG-co-MAA) hydrogels. Arabian Journal of Chemistry 5: 1 – 9.

14.    Li, A., Liu, R. and Wang, A. (2005). Preparation of starch-graft-poly(acrylamide)/attapulgite superabsorbent composite. Journal of Applied Polymer Science 98(3): 1351 – 1357.

15.    Seddiki, N. and Aliouche, D. (2013). Synthesis, rheological behavior and swelling properties of copolymer hydrogels based on poly(N-isopropylacrylamide) with hydrophilic monomers. Chemical Society of Ethiopia 27(3): 447 – 457.

16.    Isik, B. (1998). Swelling behavior of acrylamide-2-hydroxyethyl methacrylate hydrogels. Turkey Journal of Chemistry 24(2): 147 – 156.

17.    Amin, M. C. I. M., Ahmad, N., Halib, N. and Ahmad, I. (2012). Synthesis and characterization of thermo- and pH-responsive bacterial cellulose/acrylic acid hydrogels for drug delivery. Carbohydrate Polymers 88(2): 465 – 473.

18.    Zhao, Z., Li, Z., Xia, Q., Xi, H. and Lin, Y. (2008). Fast synthesis of temperature-sensitive PNIPAAm hydrogels by microwave irradiation. European Polymer Journal 44(4): 1217 –1224.

19.    Blanche, S. and Sun, X. (2004). Physical characterization of starch extrudates as a function of melting transitions and extrusion conditions. Advances in Polymer Technology 23(4): 277 – 290.

20.    Cheetham, N. W. H. and Tao, L. (1998). Solid state NMR studies on the structural and conformational properties of natural maize starches. Carbohydrate Polymers 36(4): 285 – 292.

21.    Bhattachary, A., Rawlins, J. W. and Ray, P. (2009). Polymer Grafting and Crosslinking. United States of America: John Wiley & Sons Inc.

22.    Diab, T., Biliaderis, C. G., Gerasopoulos, D. and Sfakiotakis, E. (2001). Physicochemical properties and application of pullulan edible films and coatings in fruit preservation. Journal of the Science of Food and Agriculture 2(81): 988 – 1000.

23.    Xia, Y. Q., Guo, T. Y., Song, M. D., Zhang, B. H. and Zhang, B. L. (2005). Hemoglobin recognition by imprinting in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan. Biomacromolecules 6(5): 2601 – 2606.

24.    Painter, P. C., Graf, J. F. and Coleman, M. M. (1991). Effect of hydrogen bonding on the enthalpy of mixing and the composition dependence of the glass transition temperature in polymer blends. Macromolecules 24(20): 5630 – 5638.

25.    Bursali, E. A., Coskun, S., Kizil, M. and Yurdakoc, M. (2011). Synthesis, characterization and in vitro antimicrobial activities of boron/starch/polyvinyl alcohol hydrogels. Carbohydrate Polymers 83(3): 1377 – 1383.

26.    Vakili, M. R. and Rahneshin, N. (2013). Synthesis and characterization of novel stimuli-responsive hydrogels based in starch and l-aspartis acid. Carbohydrate Polymers 9(8): 1624 – 1630.

27.    Liu, X., Wang, Y., Yu, L., Tong, Z., Chen, L., Liu, H. and Li, X. (2013). Thermal degradation and stability of starch under different processing conditions. Starch - Stärke 65(1-2): 48 – 60.

28.    French, D. (1972). Fine structure of starch and its relationship to the organization or starch granules. Journal of Japanese Society for Starch Science 19(1): 8 – 25.

29.    Razzak, M. T., Darwis, D. and Zainuddin, S. (2001). Irradiation of polyvinyl alcohol and polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiation Physics and Chemistry 62(1): 107 – 113.

30.    Gallagher, A. J., Anniadh, A. N., Bruyere, K., Otténio, M., Xie, H. and Gilchrist, M. D. (2012). Dynamic tensile properties ofhuman skin. International IRCOBI Conference on the Biomechanics of Injury, pp 494 – 502.

31.    Kunal, P., Banthia, A. K. and Majumdar, D. K. (2006). Preparation of transparent starch based hydrogel membrane with potential application as wound dressing. Trends in Biomaterials and Artificial Organs 20(1): 59 – 67.




Previous                    Content                    Next