Malaysian Journal of Analytical Sciences Vol 20 No 1 (2016): 149 - 156

 

 

 

PREPARATION AND CHARACTERIZATION OF GRAPHENE-BASED MAGNETIC HYBRID NANOCOMPOSITE

 

(Penyediaan dan Pencirian Nano Komposit Hibrid Magnetik Berasaskan Grafin)

 

Jashiela Wani Jusin1, Madzlan Aziz1,2*, Goh Pei Sean2, Juhana Jaafar2

 

1Department of Chemistry, Faculty of Science

2Advanced Membrane Technology Centre

Universiti Teknologi Malaysia, 81310 UTM Johor Bharu,  Johor, Malaysia

 

*Corresponding author: madzlan@utm.my

 

 

Received: 9 December 2014; Accepted: 16 November 2015

 

 

Abstract

Graphene-based magnetic hybrid nanocomposite has the advantage of exhibiting better performance as platform or supporting materials to develop novel properties of composite by increasing selectivity of the targeted adsorbate. The hybrid nanomaterial was prepared by mixing and hydrolyzing iron (II) and iron (III) salt precursors in the presence of graphene oxide (GO) dispersion through co-precipitation method followed by in situ chemical reduction of GO. The effect of weight loading ratio of Fe to GO (4:1, 2.5:1, 1:1 and 1:4) on structural properties of the hybrid nanomaterials was investigated. The presence of characteristic peaks in FTIR spectra indicated that GO has been successfully oxidized from graphite while the decrease in oxygenated functional groups and peaks intensity evidenced the formation of hybrid nanomaterials through the subsequent reduction process. The presence of characteristic peaks in XRD pattern denoted that magnetite nanoparticles disappeared at higher loading of GO. TEM micrograph showed that the best distribution of iron oxide particles on the surface of hybrid nanomaterial occurred when the loading ratio of Fe to GO was fixed at 2:5 to 1. The reduced graphene oxide (RGO) sheets in the hybrid materials showed less wrinkled sheet-like structure compared to GO due to exfoliation and reduction process during the synthesis. The layered morphology of GO degrades at higher concentrations of iron oxide.

 

Keywords: graphene, graphene oxide, surface modification, chemical co precipitation, magnetic nanoparticles

 

Abstrak

Nano komposit hibrid magnetik berasaskan grafin mempunyai kelebihan dengan mempamerkan prestasi yang lebih baik sebagai platform atau bahan sokongan untuk mengembangkan sifat-sifat baharu komposit dengan meningkatkan pemilihan bahan terjerap yang disasarkan. Bahan nano hibrid telah disediakan dengan mencampurkan dan menhidrolisasikan pemula garam ferum (II) dan ferum (III) ke dalam sebaran grafin oksida (GO) melalui kaedah mendakan kimia diikuti oleh pengurangan kimia GO secara in situ. Kesan nisbah muatan berat Fe ke GO (4: 1, 2.5: 1, 1: 1 dan 1: 4) terhadap sifat struktur bahan nano hibrid telah dikaji. Kehadiran puncak berciri dalam spektrum FTIR menunjukkan bahawa GO telah berjaya teroksida daripada grafit manakala penurunan dalam kumpulan berfungsi oksigen dan keamatan puncak membuktikan bahawa terdapat pembentukan bahan nano hibrid berikutan melalui proses pengurangan. Kehadiran puncak berciri dalam corak XRD menandakan bahawa nano zarah magnetit hilang apabila muatan GO lebih tinggi. Mikrograf TEM menunjukkan bahawa pengagihan zarah ferum oksida yang terbaik di atas permukaan bahan nano hibrid berlaku apabila nisbah muatan berat Fe ke GO ditetapkan pada 2:5 ke 1. Kepingan grafin oksida yang melalui proses pengurangan (RGO) dalam bahan hibrid menunjukkan struktur kedutan yang berkurang berbanding GO disebabkan oleh proses pengelupasan dan pengurangan semasa sintesis. Lapisan morfologi GO berkurang pada kepekatan ferum oksida yang lebih tinggi.

 

Kata kunci: grafin, grafin oksida, pengubahsuaian permukaan, mendakan kimia, nano zarah magnet
 

References

1.       Blöcher, C., Dorda, J., Mavrov, V., Chmiel, H., Lazaridis, N. K. and Matis, K. A. (2003). Hybrid flotation—membrane filtration process for the removal of heavy metal ions from wastewater. Water Research, 37(16): 4018 – 4026.

2.       Kadirvelu, K., Thamaraiselvi, K. and Namasivayam, C. (2001). Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresource Technology, 76(1):  63 – 65.

3.       Katsou, E., Malamis, S. and Haralambous, K. J. (2011). Industrial wastewater pre-treatment for heavy metal reduction by employing a sorbent-assisted ultrafiltration system. Chemosphere, 82(4): 557 – 564.

4.       Dabrowski, A., Hubicki, Z., Podkościelny, P. and Robens, E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere, 56(2): 91 –106.

5.       Qdais, H. A. and Moussa, H. Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination, 164(2): 105 – 110.

6.       Geim, A. K. and Novoselov, K. S. (2007) The rise of graphene. Nature Materials, 6(3): 183 – 191.

7.       Novoselov, K. S., Geim, A. K., Morozov, S.V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V. and Firsov, A. A. (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): 197 – 200.

8.       Wu, Q., Zhao, G., Feng, C., Wang, C. and Wang, Z. (2011). Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples. Journal of Chromatography A, 1218(44): 7936 – 7942.

9.       Sheng, G., Li, Y., Yang, X., Ren, X., Yang, S., Hu, J. and Wang, X. (2012). Efficient removal of arsenate by versatile magnetic graphene oxide composites. RSC Advances, 2(32): 12400 – 12407.

10.    Fan, L., Luo, C., Sun, M., Qiu, H. and Li, X. (2013). Synthesis of magnetic β-cyclodextrin–chitosan/graphene oxide as nanoadsorbent and its application in dye adsorption and removal. Colloids and Surfaces B: Biointerfaces, 2013. 103: 601 – 607.

11.    Hummers, W.S. and Offeman, R.E. (1958). Preparation of Graphitic Oxide. Journal of the American Chemical Society, 80(6): 1339 –1339.

12.    Yao, Y., Miao, S., Liu, S., Ma, L.P., Sun, H. and Wang, S. (2012). Synthesis, characterization, and adsorption properties of magnetic Fe3O4@graphene nanocomposite. Chemical Engineering Journal, 184(0): 326 – 332.

13.    Ji, Z., Shen, X., Song, Y. and Zhu, G. (2011). In situ synthesis of graphene/cobalt nanocomposites and their magnetic properties. Materials Science and Engineering: B, 176(9): 711 – 715.

14.    Zhu, S., Guo, J., Dong, J., Cui, Z., Lu, T., Zhu, C., Zhang, D. and Ma, J. (2013). Sonochemical fabrication of Fe3O4 nanoparticles on reduced graphene oxide for biosensors. Ultrasonics Sonochemistry, 20(3): 872 – 880.

15.    Chia, C. H., Zakaria, S., Farahiyan, R., Liew, T. K., Khien L. N., Abdullah, M. and Ahmad, S. (2008). Size-controlled Synthesis and Characterization of Fe3O4 Nanoparticles by Chemical Coprecipitation Method. Sains Malaysiana, 37(4): 389 – 394.

16.    Singh, V. K., Patra, M. K., Manoth, M., Gowd, G. S., Vadera, S. R. and Kumar, N. (2009). In situ synthesis of graphene oxide and its composites with iron oxide. New Carbon Materials, 24(2): 147 – 152.

17.    Guo, J., Wang, R., Tjiu, W., Pan, J. and Liu, T. (2012). Synthesis of Fe nanoparticles@graphene composites for environmental applications. Journal of Hazardous Materials, 225–226: 63 –73.

 



Previous                    Content                    Next