Malaysian Journal of Analytical Sciences Vol 20 No 1 (2016): 187 - 196

 

 

 

ADSORPTION OF Cu, As, Pb AND Zn BY BANANA TRUNK

 

(Penjerapan Cu, As, Pb dan Zn oleh Batang Pisang)

 

Nurzulaifa Shaheera Erne Mohd Yasim1*, Zitty Sarah Ismail1, Suhanom Mohd Zaki2, Mohd Fahmi Abd Azis1

 

1Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

2Faculty of Business Management,

Universiti Teknologi MARA, 26400 Bandar Tun Razak Jengka, Pahang, Malaysia

 

*Corresponding author:  nurzulaifa@salam.uitm.edu.my

 

 

Received: 9 December 2014; Accepted: 16 October 2015

 

 

Abstract

The purpose of this study is to investigate the effectiveness of banana trunk as an adsorbent in removal of heavy metals in aqueous solution. Functional groups of adsorbent were determined using Fourier Transform Infrared spectroscopy (FTIR). Batch experiments were conducted to determine the adsorption percentage of heavy metals (Cu, As, Pb and Zn). The optimum adsorption using banana trunk was based on pH difference, contact time and dosage. Adsorption percentage was found to be proportional to pH, contact time and dosage. Maximum adsorption percentage of Cu, As, Pb and Zn at pH 6, 100 minutes and 8 gram of dosage are 95.80 %, 75.40 %, 99.36 % and 97.24 %, respectively. Langmuir and Freundlich isotherms were used to determine the equilibrium state for heavy metals ion adsorption experiments. All equilibrium heavy metals were well explained by the Freundlich isotherm model with R2 = 0.9441, R2 = 0.8671, R2 = 0.9489 and R2 = 0.9375 for Cu, As, Pb and Zn respectively. It is concluded that banana trunk has considerable potential for the removal of heavy metals from aqueous solution.

 

Keywords: adsorption, heavy metals, banana trunk, pH, contact time

 

Abstrak

Kajian ini bertujuan untuk menyiasat keberkesanan batang pisang sebagai penjerap dalam penyingkiran logam berat di dalam larutan akueus. Kumpulan berfungsi penjerap ditentukan menggunakan Spektrospkopi Infra Merah Transformasi Fourier (FTIR). Eksperimen kelompok dilakukan untuk menentukan peratusan penjerapan logam berat (Cu, As, Pb dan Zn). Penjerapan optimum menggunakan batang pisang berdasarkan pH yang berbeza, masa sentuhan dan dos penjerap dianalisis dalam eksperimen kelompok. Peratus penjerapan didapati berkadar terus dengan pH, masa sentuhan dan dos penjerap. Peratus penjerapan maksimum Cu, As, Pb dan Zn pada pH 6, 10 minit masa sentuhan dan 8 gram dos penjerap masing-masing ialah 95.80 %, 75.40 %, 99.36 % dan 97.24 %. Isoterma Langmuir dan Freundlich telah digunakan untuk menentukan keadaan keseimbangan bagi eksperimen penjerapan logam berat. Semua keseimbangan logam berat dijelaskan dengan baik oleh model isoterma Freundlich dengan R2 = 0.9441 , R2 = 0.8671 , R2 = 0.9489 dan R2 = 0.9375 masing – masing untuk logam Cu, As, Pb dan Zn. Dapat disimpulkan bahawa batang pisang mempunyai potensi besar untuk penyingkiran logam berat daripada larutan akues.

 

Kata kunci: penjerapan, logam berat, batang pisang, pH, masa sentuhan

 

References

1.       Chen, T. C., Priambodo, R., Huang, R. L. and Huang, Y. H. (2013). The Effective Electrolytic Recovery of Dilute Copper from Industrial Wastewater. Journal of Waste Management. 2013: 1 – 6.

2.       Perk, M. V. D. (2007). Soil and water contamination; from molecular to catchment scale. Utrecht, Netherland: Taylor & Francis. 128.

3.       Garba, Z. N. and Hamza, S. A. (2010). Arsenic level speciation in fresh water from Karaye, local government area, Kano state, Nigeria. International Journal Chemistry 20 (2): 113 – 117.

4.       Tong, S., Schirnding, Y. E. V. and Prapamontol, T. (2000). Environmental lead exposure: a public health problem of global dimensions. Bulletin of the World Health Organization 78(9): 1068 – 1077.

5.       Kumari, P., Sharma, P., Srivastava, S. and Srivastava, M. M. (2006). Biosorption studies on sheeled Moringa oleifera Lamarck seed powder: Removal and recovery of arsenic from aqueous system. International Journal of Mineral Processing 78(3): 131 – 139.

6.       Mondal, P., Majumder, C. B. and Mohanty, B. (2008). Treatment of arsenic water in a batch reactor by using ralstonia eutropha MTCC 2847 and granular activated carbon. Journal of Hazardous Materials 153(1-2): 588 – 599.

7.       Rahman, M. S., Basu, A. and Islam, M. R. (2008). The removal of As (III) and As (V) from aqueous solutions by waste materials. Bioresource Technology. 99(8): 2815 – 2823.

8.       Murugesan, G. S., Sathiskumar, M. and Swaminathan, K. (2006). Arsenic removal from groundwater by pretreated waste tea fungal biomass. Bioresource Technology. 97(3): 483 – 487.

9.       Oladeji, Taiwo, J., Oyetunji and Ropo, O. (2013). Investigations into Physical and Fuel Characteristics of Briquettes Produced from Cassava and Yam Peels. Journal of Energy Technologies and Policy 3 (7): 40 – 46.

10.    Deans, J. R. and Dixon, B. G. (1992). Uptake of Pb2+ and Cu2+ by novel biopolymers. Water Resource 26(4): 469 – 472.

11.    Ankit, B. and Silke, S. (2008). Assessment of biosorption mechanism for Pb binding by citrus pectin. Separation and Purification Technology 63(3): 577 – 581.

12.    Prasad, D. and Abdulsalam (2009). Biosorption on Fe (II) from aqueous solution using Tamarind Bark and potato peel waste; equilibrium and kinectic studies. Journal Application Science in Environmental Sanitation 4(3): 273 – 282.

13.    Saeed, A., Akther, M. W. and Iqbal, M. (2005). Removal and recovery heavy metal from aqueous solution using papaya wood as a new biosorbent. Separation and Purification Technology 45 (1): 25 –31.

14.    Kamsonlian, S., Balomajumder, C. and Chand, S. (2012). A potential of biosorbent derived from banana peel for removal of As (III) from contaminated water. Journal of Chemical Sciences and Applications 3(2): 268 – 275.

15.    Sim, S. F., Murtedza, M., Lu, N. A. L. M. I., Sarman, N. S. P. and Samsudin, S. N. S. (2012). Computer-assisted analysis of Fourier Transform Infrared (FTIR) spectra for characterization of various treated and untreated agriculture biomass. BioResources 7(4): 5367 – 5380.

16.    Ahmet, S. and Mustafa, T. (2008). Biosorption of total chromium from aqueous solution by red algae (ceramium virgatum): equilibrium, kinetic and thermodynamics studies. Journal of Hazardous Materials 160: 349 – 355.

17.    Shugi, K., Singh, T. S. and Pant, K. K. (2003). Equilibrium and kinetics studies on removal arsenite by iron oxide coated activated alumina. Indian Journal Environmental Health 45: 151 – 154.

18.    Hossain, M. A., Ngo, H. H., Guo, W. S. and Nguyen, T. V. (2012). Biosorption of Cu (II) from water by banana peel based biosorbent: experiments and models of adsorption and desorption. Journal of Water Sustainability 2(1): 87 – 104.

19.    Wu, H. X., Wang, T. J., Chen, L. and Jin, Y. (2009). The roles of the surface charge and hydroxyl group on a Fe-Al-Ce adsorbent in fluoride adsorption. Industrial Engineering Chemistry Research 48: 4530 – 4534.

20.    Chang, W. C., Deka, J. R., Wu, H. Y., Shieh, F. K., Huang, S. Y. and Kao, H. K. (2013). Synthesis and characterization of large pore cubic mesoporous silicas functionalized with high contents of carboxylic acid groups and their use as adsorbents. Applied Catalysis B: Environmental 142 – 143: 817 – 827.

21.    Arunakumara, K. K. I. U., Buddhi, C. W. and Min-Ho, Y. (2013). Banana Peel: A Green Solution for Metal Removal from Contaminated Water. Korean Journal of Environmental Agriculuture 32 (2): 108 – 116.

22.    Kamsonlian, S., Suresh, S., Majumder, C. B., Chand, S. (2011). Biosorption of As (V) from contaminated water onto tea waste biomass: sorption parameters optimization, equilibrium and thermodynamic studies. Journal of Future Engineering and Technology 7: 34 – 41.

23.    Nady, A. F. and Iman, Y. E. S. (2011). Equilibrium Removal of Pb (II) Ions from Aqueous Solution onto Oxidized-KOH-Activated Carbons. Carbon Letters 12 (1): 1 – 7.

24.    Muhammad, A. A., Abdul, W., Karamat, M., Mohd, J. M. and Ismail, Y. (2011). Low cos biosorbent banana peel (Musa sapientum) for the removal of heavy metals. Scientific Research and Essays 6 (19): 4055 – 4064.

25.    Said, N., Amalina, R., Mazza, S. A. A., Syafiqah, A. K. and Hajar, A. M. S. (2015). Rock Melon Activated Carbon (RMAC) for Removal of Cd (II), Ni (II) and Cu (II) from Wastewater: Kinetics and Adsorption Equilibrium. International Journal of Chemical Engineering and Applications 6 (2): 105 – 110.

26.    Morteza, F. and Mohsen, J. (2015). Removal of heavy metals from aqueous solution using sunflower, potato, canola and nut shell residues. Journal of the Taiwan Institute of Chemical Engineers 54: 125 – 136.

27.    Ningchuan, F., Xueyi, G., Sha, L., Yanshu, Z. and Jianping, L. (2011). Biosorption of heavy metals from aqueous solutions by chemically modified orange peel. Journal of Hazardous Materials 185: 49 – 54.

28.    Xiaoli, L., Yanfeng, L. and Zhengfang, Y. (2011). Preparation of macroporous bead adsorbents based on poly (vinyl alcohol)/chitosan and their adsorption properties for heavy metals from aqueous solution. Chemical Engineering Journal 178: 60 – 68

29.    Suantak, K., Balomajumder, C. and Chand, S. (2012). Studies on surface characterization and isotherm modelling: Biosorption of Arsenic (III) onto low cost biosorbent derived from orange peel. Journal of Scientific and Industrial Research 71: 810 – 816.

30.    Suantak, K., Balomajumder, C. and Chand, S. (2012). A potential of biosorbent derived from banana peel for removal of As (III) from contaminated water. International Journal of Chemical Sciences and Applications 3 (2): 269 – 275.

 




Previous                    Content                    Next