Malaysian Journal of Analytical Sciences Vol 20 No 1 (2016): 31 - 43

 

 

 

SPECTROSCOPIC ANALYSIS OF RHAMNOLIPID PRODUCED BY PRODUCED BY Pseudomonas aeruginosa UKMP14T

 

(Analisis Spektroskopik Ramnolipid yang Dihasilkan oleh P. aeruginosa UKMP14T)

 

Noramiza Sabturani1, Jalifah Latif2, Shahidan Radiman3, Ainon Hamzah1*

 

1School of Biosciences and Biotechnology

2School of Chemical Sciences and Food Technology

 3School of Applied Physics

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: ainonh@gmail.com

 

 

Received: 21 September 2015; Accepted: 20 November 2015

 

 

Abstract

Biosurfactant produced by Pseudomonas aeruginosa UKMP14T was optimized by growing the isolate in mineral salt medium (MSM) supplemented with 1% (v/v) glycerol and 1.3 g/L ammonium sulphate with C/N ratio of 14:1. The culture medium was incubated at 37°C, with an agitation speed of 150 rpm for 7 days. P. aeruginosa UKMP14T produced biosurfactant at 0.8 g/L after 7 days incubation. Anthrone assay proved biosurfactant was glycolipid. The biosurfactant was characterized by scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX) in addition to Fourier transform infra-red (FT-IR), nuclear magnetic resonance (NMR) and electrospray ionization-mass spectrometry (ESI-MS). The SEM-EDX analysis indicated the presence of carbon and oxygen elements by 78% and 22% (atomic %), respectively. FT-IR absorption spectra indicated the functional groups of rhamnolipid were located at 3308.46, 2922.91, 2857.09 and 1730.96 cm-1. ESI-MS/MS analyses identified P. aeruginosa UKMP14T produced rhamnolipid with two fatty acids-nine congeners, L-rhamnosyl-L-rhamnosyl-β-hydroxydecanoyl-β-hydroxydecanoate (Rha-Rha-C10-C10) (m/z 649) which formed the main compound. The critical micelle concentration (CMC) of this rhamnolipid was established at 30 mg/L (32 dynes/cm). The characteristics of biosurfactant produced by P. aeruginosa UKMP14T indicated it has a high potential in industrial dan bioremediation application.

 

Keywords: biosurfactant, Pseudomonas aeruginosa, rhamnolipid, spectroscopic analysis, CMC value

 

Abstrak

Biosurfaktan dihasilkan oleh Pseudomonas aeruginosa UKMP14T dioptimumkan dalam medium garam mineral (MSM) yang ditambahkan dengan 1% (i/i) gliserol dan 1.3 g/L ammonium sulfat dengan nisbah C/N iaitu 14:1. Medium kultur ini dieram pada 37°C, dengan kelajuan goncangan pada 150 psm selama 7 hari. P. aeruginosa UKMP14T menghasilkan biosurfaktan sebanyak 0.8 g/L selepas 7 hari pengeraman. Asai antron membuktikan biosurfaktan terhasil adalah glikolipid. Biosurfaktan tersebut dicirikan oleh mikroskop pengimbasan elektron-spektroskopi tenaga serakan sinaran-X (SEM-EDX), dengan penambahan Infra-merah transformasi Fourier (FT-IR), resonan magnetik nuklear (NMR) daknn spektrometri jisim-pengionan elektrosemburan (ESI-MS). Analisis SEM-EDX menunjukkan kehadiran unsur karbon dan oksigen masing-masing sebanyak 78% dan 22% (% atomik). Spektrum penyerapan FT-IR menunjukkan kumpulan berfungsi ramnolipid pada 3308.46, 2922.91, 2857.09 dan 1730.96 cm-1. Analisis ESI-MS/MS mengenalpasti P. aeruginosa UKMP14T menghasilkan ramnolipid dengan sembilan kongener-dua asid lemak, L-ramnosil-L-ramnosil-β-hidroksidekanoil-β-hidroksidekanoat (Rha-Rha-C10-C10) (m/z 649) sebagai sebatian utama. Kepekatan misel kritikal (CMC) ramnolipid ini dikesan pada 30 mg/L (32 dynes/cm). Ciri-ciri biosurfaktan yang dihasilkan oleh P. aeruginosa UKMP14T menunjukkan ia mempunyai potensi tinggi untuk di aplikasi dalam industri dan bioremediasi.

 

Kata kunci: biosurfaktan, Pseudomonas aeruginosa, ramnolipid, analisis spektroskopik, nilai CMC

 

References

1.       Benincasa, M., Marqués, A., Pinazo, A. and Manresa, A. (2010). Rhamnolipids surfactants: alternatives substrates, new strategies. In. Sen,. R. (Ed.). Biosurfactants, pages. 170 - 184. New York: Landes Bioscience and Springer Science+Business Media.

2.       Shoeb, E., Akhlaq, F., Badar, U., Akhter, J. and Imtiaz, S. (2013). Classification and industrial applications of biosurfactants. Part-I: Natural and Applied Sciences, 4 (3): 243 - 252.

3.       Sanket, K. G. & Yagnik, B. N. (2013). Current trend and potential for microbial biosurfactants. Asian Journal Explore Biology Science, 4 (1): 1-8.

4.       Nie, M., Yin, X., Ren, C., Wang, Y., Xu, F. and Shen, Q. (2010). Novel rhamnolipid biosurfactants produced by polycyclic aromatic hydrocarbon-degrading bacterium Pseudomonas aeruginosa strain NY3. Biotechnology Advances, 28: 635 - 643.

5.       Bordoloi, N. K. and Konwar, B. K. (2009). Bacterial biosurfactant in enhancing solubility and metabolism of petroleum hydrocarbons. Journal of Hazardous Materials, 170: 495 - 505.

6.       Rakde, A. K., Kumbhar, A. B. and Chaudhari, P. D. (2013). Marine surfactants: A review. Journal of Biochemical and Pharmaceutical Research, 2 (2): 1 - 5.

7.       Ainon, H., Noramiza, S. and Shahidan, R. (2013). Screening of biosurfactants produced by the hydrocarbon-degrading bacteria. Sains Malaysiana, 42 (5): 615 - 623.

8.       Zajic, E. and Supplison, B. (1972). Emulsification and degradation of “Bunker C” fuel oil by microorganisms. Biotechnology and Bioengineering, 14: 331 - 343.

9.       Bouchez, M., Blanchet, D. and Vandacasteele, J. P. (1995). Degradation of polycyclic aromatic hydrocarbons by pure strains and defined strain associations: inhibition phenomena and cometabolism. Applied Microbiology Biotechnology, 43: 156 - 164.

10.    Hamzah, A., Rabu, A., Azmy, R. F. H. R. and Yussoff, N. A. (2010). Isolation and characterization of bacteria   degrading Sumandak and South Angsi oils. Sains Malaysiana, 39 (2): 161 - 168.

11.    Bailey, R.W. (1958). The reaction of pentoses with anthrone. Biochemical Journal, 68: 669 - 672.

12.    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein  utilizing the principle of protein-dye binding. Analytic Biochemistry, 72: 248 - 254.

13.    Chen, C.I. and Taylor, R.T. (1995). Thermophilic biodegradation of BTEX by two Thermus species.   Biotechnology & Bioengineering, 48: 614 - 624.

14.    Dykstra, M. J. and Reuss, L. E. (2003). Biological Electron Microscopy, Theory, Techniques, and Troubleshooting. Second Edition. US: Springer.

15.    Zhang, Y. and Miller, R. M. (1992). Enhancement of octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid biosurfactant. Applied and Environmental Microbiology, 58: 3276 - 3282.

16.    Xia, W-J., Dong, H-P., Yu, L. and Yu, D-F. (2011). Comparative study of biosurfactant produced by microorganisms isolated from formation water of petroleum reservoir. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 392: 124 - 130.

17.    Lin, S-C., Sharma, M. M. and Georgiou, G. (1993). Production and deactivation of biosurfactant by Bacillus licheniformis JF-2. Biotechnology Process, 9: 138 - 145.

18.    Wu, J-Y., Yeh, K-L., Lu, W-B., Lin, C-L. and Chang, J-S. (2008). Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresource Technology, 99: 1157 - 1164.

19.    Lotfabad, T. B., Shourian, M., Roostaazad, R., Najafabadi, A. R., Adelzadeh, M. R. And Noghabi, K. A. (2009). An efficient biosurfactant-producing bacterium P. aeruginosa MR01 isolated from oil excavation areas in South of Iran. Colloids & Surfaces B: Biointerfaces, 69: 183 - 193.

20.    Saharan, B. S., Sahu, R. K. and Sharma, D. (2011). A review on biosurfactants: fermentation, current developments and perspectives. Genetic Engineering and Biotechnology, 29: 1 - 14.

21.    de Sousa, J. R., Correia, J. A. d. C., de Almeida, J. G. L., Rodrigues, S., Pessoa, O. D. L., Melo, V. M. M. and Goncalves, L. R. B. (2011). Evaluation of a co-product of biodiesel production as carbon source in the production of biosurfactant by P. aeruginosa MSIC02. Process Biochemistry, 46: 1831 - 1839.

22.    Mehdi, S., Dondepati, J. S. and Rahman, P. K. S. M. (2011). Influence of nitrogen and phosphorus on rhamnolipid biosurfactant production by P. aeruginosa DS10-129 using glycerol as carbon source. Biotechnology, 10 (2): 183 - 189.

23.    Monteiro, S. A., Sassaki, G. L., De Souza, L. M., Meira, J. A., De Araujo, J. M., Mitchell, D. A., Ramos, L. P. And Krieger, N. (2007). Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chemistry and Physics of Lipids, 147: 1 - 13.

24.    Benincasa, M. and Accorsini, F. R. (2008). P. aeruginosa LBI production as a integrated process using the wastes from sunflower-oil refining as a substrate. Bioresource Technology, 99: 3843 - 3849. 

25.    Abbasi, H., Hamedi, M. M., Lotfabad, T. B., Zahiri, H. S., Sharafi, H., Masoomi, F., Moosavi-Movahedi, A. A., Ortiz, A., Amanlou, M. and Noghabi, K. A. (2012). Biosurfactant-producing bacterium, P. aeruginosa MA01 isolated from spoiled apples: Physicochemical & structural characteristics of isolated biosurfactant. Journal of Biosciences & Bioengineering, 113 (2): 211 - 219.

26.    Janek, T., Lukaszewicz, M. and Krasowska, A. (2013). Identification and characterization of biosurfactants produced by the Arctic bacterium Pseudomonas putida BD2. Colloids & Surfaces B: Biointerfaces, 110: 379 - 386.

27.    Pornsunthorntawee, O., Chavadej, S. and Rujiravanit. R. (2009). Solution properties and vesicle formation of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa SP4. Colloid and Surfaces B, 72: 6 - 15.

28.    Yin, H., Qjang, J., Jia, Y., Ye, J., Peng, H., Qin, H., Zhang, N. and He, B. (2009). Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochemistry, 44: 302 - 308.

29.    Costa, S.G. V. A. O, Nitschke, M., Lépine, F, Déziel, E. and Contiero, J. (2010). Structure, properties, and applications of rhamnolipids produced by Pseudomonas aeruginosa L2-1 from cassava wastewater. Process Biochemistry, 45: 1511 - 1516.

30.    Mata-Sandoval, J. C., Karns, J. and Torrents, A. (2000). The influence of surfactants and biosurfactants on the bioavailability of hydrophobic organic pollutants in subsurface environments. Review International Contamination Ambient, 16 (4): 193 - 203.

31.    Urum, K. and Pekdemir, T. (2004). Evaluation of biosurfactants for crude oil contaminated soil washing. Chemoshere, 57: 1139 - 1150.

32.    Singh, A., Van Hamme, J.D. and Ward, O.P. (2007). Surfactants in microbiology and biotechnology: Part 2. Application aspects. Biotechnology Advances, 25: 99 - 121.




Previous                    Content                    Next