Malaysian Journal of Analytical Sciences Vol 20 No 1 (2016): 73 - 84

 

 

 

THEORETICAL AND EXPERIMENTAL INVESTIGATION OF PYRIDYL-THIOUREA DERIVATIVES AS IONOPHORES FOR Cu(II) ION DETECTION

 

(Kajian Teori dan Eksperimen bagi Terbitan –Terbitan Piridil-Tiourea Sebagai Ionofor untuk Pengesanan Ion Cu(II))

 

Wan M. Khairul1*, Mohd Faizuddin Abu Hasan1, Adibah Izzati Daud1,3,

Hafiza Mohamed Zuki2, Ku Halim Ku bulat1, Maisara Abdul Kadir1

 

1School of Fundamental Science

2School of Marine Science and Environment

Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

3Faculty of Engineering Technology,

Universiti Malaysia Perlis (UniMAP),

Aras 1, Blok S2, Kampus UniCITI Alam, Sungai Chuchuh, 02100 Padang Besar, Perlis, Malaysia

 

*Corresponding author: wmkhairul@umt.edu.my

 

 

Received: 5 November 2015; Accepted: 27 December 2015

 

 

Abstract

Copper (II) ion chemical sensors based on pyridine-thiourea derivatives; N-pyridyl-N’-(biphenyl-4-carbonyl)thiourea (L1), and N-pyridyl-N’-(3,5-dimethyoxybenzoyl)thiourea (L2) were synthesised, characterised, and studied as ionophores in the form of thin-films PVC membranes. The ionophores exhibited good responses towards copper (II) ion over the concentration range of 2 x 10-4 to 10 x 10-4 M with a limit of detection 1.34 x 10-5 to 1.48 x 10-5 M. The proposed sensors L1 and L2 revealed good performance in term of reproducibility and regeneration of the ionophores with low relative standard deviation (RSD) values 4.17 % and 2.74 % respectively. Besides, quantum chemical calculation performed using Gaussian 09 program indicated the oxygen (O) atom from carbonyl moiety (C=O) was the most favourite reactive site and mainly responsible for ionophore– Cu(II) interaction. The obtained data revealed pyridine-thiourea derivatives offered great potential as ionophore for the detection of Cu (II) ion.

 

Keywords: pyridine, thiourea, metal sensor, density functional theory, spectroscopic

 

Abstrak

Pengesan kimia bagi ion kuprum (II) berasaskan terbitan piridil-tiourea; N-piridil-N’-(bifenil-4-karbonil)tiourea (L1), and N-piridil-N’-(3,5-dimetoksibenzoil)tiourea (L2) telah disintesis, dicirikan, dan dikaji sebagai ionofor dalam bentuk membran-membran PVC filem nipis. Ionofor – ionofor tersebut menunjukkan tindak balas yang baik terhadap ion kuprum (II) dalam julat kepekatan 2 x 10-4 to 10 x 10-4 M dengan had pengesanan 1.34 x 10-5 sehingga 1.48 x 10-5 M. Pengesan L1 dan L2 yang dicadangkan ini menunjukkan prestasi yang baik dari segi kebolehkeluaran semula dan penjanaan semula bagi ionofor – ionofor tersebut dengan nilai sisihan relatif piawaian yang rendah iaitu masing – masing 4.17% dan 2.74%. Selain itu, pengiraan kuantum kimia dilakukan dengan menggunakan program Gaussian 09 yang menyatakan bahawa atom oksigen (O) daripada moiti karbonil (C=O) adalah kawasan paling reaktif dan selalunya terlibat dalam interaksi ionofor-Cu (II). Data yang diperolehi menyatakan terbitan piridil-tiourea menawarkan potensi yang bagus sebagai ionofor bagi pengesanan ion Cu (II).

 

Kata kunci: piridina, tiourea, pengesan logam, teori fungsi ketumpatan, spektroskopi

 

References

1.       Kaya, E. D., Söyüt, H. and Sükrü, B. (2013). Carbonic anhydrase activity from the gilthead sea bream (Sparus aurata) liver: The toxicological effects of heavy metals. Environmental Toxicology and Pharmacology, 36: 514 – 521.

2.       Olawoyin, R., Oyewole, S. A. and Grayson, R. L. (2012). Potential risk effect from elevated levels of soil heavy metals on human health in the Niger delta. Ecotoxicology and Environmental Safety, 85: 120 – 130.

3.       Viswanathan, K. (2012). Utilizing a tripeptide conjugated fluorescent hybrid nanoparticles as a fluorescence sensor for the determination of copper ions. Sensors and Actuators A, 175: 15 –18.

4.       Lin, Q., Chen, P., Liu, J., Fu, Y-P., Zhang, Y-M. and Wei, T-B. (2013). Colorimetric chemosensor and test kit for detection copper (II) cations in aqueous solution with specific selectivity and high sensitivity. Dyes and Pigments, 98: 100 –105.

5.       Aziz, H. A., Adlan, M. N. and Ariffin, K. S. (2008). Heavy metals (Cd, Pb, Zn, Ni, Cu, Cr (III)) removal from water in Malaysia: Post treatment by high quality limestone. Bioresource Technology, 99: 1578 –1583.

6.       Bridgeman, J., Baker, A., Brown, D. and Boxall, J. B. (2015). Portable LED fluorescence instrumentation for the rapid assessment of potable water quality. Science of the Total Environment, 524: 338 –346.

7.       Firooz, A. L., Ensafi, A. A., Karimi, K. and Khalifeh, R. (2013). Specific sensing of mercury (II) ions by an optical sensor based on a recently synthesized ionophore. Sensors and Actuator B, 185: 84 – 90.

8.       Pradeep, T. (2009). Noble metal nanoparticles for water purification: a critical review. Thin Solid Films. 517(24): 6441 – 6478.

9.       Bakker E, Simon W. (1992). Selectivity of ion-sensitive bulk optodes. Analytical Chemistry, 64(17):1805 –1812.

10.    Saeed, A., Shaheen, U., Hameed, A. and Naqvi, S. Z. H. (2009). Synthesis, characterization and antimicrobial activity of some new 1-(fluorobenzoyl)-3-(fluorophenyl)thioureas. Journal of Fluorine Chemistry, 130: 1028 –1034.

11.    Duan, X. –E., Wei, X. –H., Tong, H. –B., Bai, S. –D., Zhang, Y. –B. and Liu, D. –S. (2011). Ferrocene-modified pyrimidinyl acyl-thiourea derivatives: Synthesis, structures and electrochemistry. Journal of Molecular Structure, 1005: 91 – 99.

12.    Karipcin, F., Atis, M., Sariboga, B., Celik, H. and Tas, M. (2013). Structural, spectral, optical and antimicrobial properties of synthesized 1-benzoyl-3-furan-2-ylmethyl-thiourea. Journal of Molecular Structure, 1048: 69 –77.

13.    Arslan, N. B., Kazak, C. and Aydın, F. (2012). N-(4-nitrobenzoyl)-N’-(1,5-dimethyl-3-oxo-2-phenyl-1H-3(2H)-pyrazolyl)-thiourea hydrate: synthesis, spectroscopic characterization, X-ray structure and DFT studies. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 89: 30–38.

14.    Rahamathullah, R., Khairul, W. M., Salleh, H., Adli, H. K., Isa, M. I. N. and Tay, M. G. (2013). Synthesis. Characterization and Electrochemical Analysis of V-Shaped Disubstituted Thiourea-Chlorophyll Thin Film as Active Layer in Organic Solar Cells. International Journal of Electrochemical Science, 8: 3333 – 3348.

15.    Zhang, L. –Y., Yuan, Y. –F., Hu, A. –G., Wang, J. –T. and Sun, J. (2001). Synthesis and molecular structure of a novel ferrocene-containing macrocyclic acyl thiourea derivative. Journal of Organometallic Chemistry, 637 – 639: 204 – 208.

16.    Saeed, A., Erben, M. F., Abbas, N. and Flӧrke, U. (2010). Synthesis, crystal X-ray diffraction structure, vibrational properties and quantum chemical calculations on 1-(4-(4-Fluorobenzamido)phenyl)-3-(4-fluorobenzoyl)thiourea. Journal of Molecular Structure, 984: 240 – 245.

17.    Tan, S. S., Al-abbasi, A. A., Mohamed Tahir, M. I. and Kassim, M. B. (2014). Synthesis, structure and spectroscopic properties of cobalt(III) complexes with 1-benzoyl-(3,3-disubstituted)thiourea. Polyhedron, 68: 287–294.

18.    Atiş, M., Karicin, F., Sariboga, B., Tas, M. and Celik, H. (2012). Structural, antimicrobial and computational characterization of 1-benzoyl-3-(5-chloro-2-hydroxyphenyl)thiourea. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 98: 290 – 301.

19.    Saeed, A., Erben, M. F. and Bolte, M. (2013). Synthesis, structural and vibrational properties of 1-(adamantine-1-carbonyl)-3-halophenyl thioureas. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 102: 408 – 413.

20.    Koca, İ., Özgür, A., Coşkun, K. A. and Tutar, Y. (2013). Synthesis and anticancer activity of acyl thioureas bearing pyrazole moiety. Bioorganic & Medicinal Chemistry, 21(13), 3859 – 3865.

21.    Estévez-Hernández, O., Otazo-Sánchez, E., Hidalgo-Hidalgo de Cisneros, J. L., Naranjo-Rodríguez, I., and Reguera, E. (2005). A Raman and infrared study of 1-furoyl-3-monosubstituted and 3,3-disubstituted thioureas. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 62(4-5): 964 –971.

22.    Vinithra, G., Suganya, S. and Velmathi, S. (2013). Naked eye sensing of anions using thiourea based chemosensors with real time application. Tetrahedron Letter, 54(41): 5612 –5615.

23.    Khairul, W. M., Yusof, M. F., Rahamathullah, R., Daud, A. I., Jasman, S. M., Hasan, M. F. A., Salleh, H., Adli, H. K. and Tay, M. G. (2013). Single Molecule Thin Film Featuring Disubstituted Thiourea (TU) Doped with Chlorophyll as Potential Active Layer in Photovoltaic Cell. International Journal of Electrochemical Science, 8: 8175 – 8190.

24.    Farhan, H. M. (2014). Preparation and investigation of complexes (bisazo)-imidazole with Co (II) and Cu (II). World Science Research Journals, 2(2): 26 – 34.

25.    Hasali, N. H. M., Omar, M. N., Zuberdi, A. M. and AlFarra, H. Y. (2013). Biotransformation of ethyl p-methoxycinnamate from Kaempferia galanga L. using Aspergillus niger. International Journal of Bioscience, 3(7): 148 –155.

26.    Koleva, B. B., Kolev, T., Lamshöft, M., Mayer-Figge, H., Sheldrick, W. S. and Spiteller, M. (2009). Synthesis, spectroscopic and structural elucidation of 1-butyl-4-[2-(3,5-dimethoxy-4-hydroxyphenyl)ethenyl)]pyridinium chloride tetrahydrate. Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy, 74(5): 1120 –1126.

27.    Sinha, S., Mandal, B. and Chandrasekaran, S. (2000). Selective para metalation of unprotected 3-methoxy and 3 , 5-dimethoxy benzoic acids with n- butyl lithium – potassium tert -butoxide ( LIC – KOR ): Synthesis of 3 , 5-dimethoxy-4-methyl benzoic acid. Tetrahedron Letter, 41: 3157–3160.

28.    Yusof, M. S. M., Jusoh, R. H., Khairul, W. M. and Yamin, B. M. (2010). Synthesis and characterisation a series of N-(3,4-dichlorophenyl)-N′-(2,3 and 4-methylbenzoyl) thiourea derivatives. Journal of Molecular Structure, 975(1-3): 280 – 284.

29.    Aydın, M., Ünal, B., Esat, B., Baykal, a., Karaoğlu, E., Toprak, M. S. and Sözeri, H. (2012). Synthesis, magnetic and electrical characteristics of poly(2-thiophen-3-yl-malonic acid)/Fe3O4 nanocomposite. Journal of Alloys and Compounds, 514: 45 – 53.

30.    Zhang, X. H., Wang, L. Y., Zhan, Y. H., Fu, Y. I., Zhai, G. H. and Wen, Z. Y. (2011). Synthesis and structural studies of 4-[(5-methoxy-1H-indole-3-yl)-methylene]-3-methyl-isoxazole-5-one by X-ray crystallography, NMR spectroscopy, and DFT calculations. Journal of Molecular Structure, 994: 371 –378.

31.    Koch, K. R., Hallale, O., Bourne, S. A., Miller, J. and Basca, J. (2001). Self-assembly of 2:2 metallomacrocyclic complexes of Ni(II) and Pd(II) with 3,3,3’,3’-tetraalkyl-1,1’-isophthaloylbis(thioureas). Crystal and molecular structures of cis-[Pd(L2-S,O)]2 and the adducts of the corresponding Ni(II) complexes: [Ni(L1-S,O)(pyridine)2]2 and [Ni(L1-S,O)(4-dimethylaminopyridine)2]2. Journal of Molecular Structure, 561: 185 –196.

32.    Marquez, H., Loupy, A., Calderon, O. and Pérez, E. R. (2006). An eco-friendly protocol for synthesis of thiourea derivatives: 1-benzoyl-3-benzylguanidine and 1-benzoyl-3-benzyl-O-ethylisourea. A possible non-purely thermal microwave assisted reaction. Tetrahedron, 62(11): 2616 – 2621.

33.    Khairul, W. M., Isa, M. I. N., Samsudin, A. S., Adli, H. K. and Ghazali, S. R. (2014). Conductive biodegradable film of N-octyloxyphenyl-N’-(4-methylbenzoyl)thiourea. Bulletin of Material Science, 37(2): 357 – 369.

34.    Jain, P. S., Khatal, R. N. and Surana, S. J. (2011). Spectrophotometric Determination of Amodiquine in Bulk and in Pharmaceutical Formulation. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 2: 120 –127.

35.    Rohini, P., Madhusudhanareddy, I., Gupta, A., Lokeswara, B. V. and Sundharani, G. (2011). Method development and validation for estimation of nevirapine from tablets by RP-HPLC. International Journal of Pharmaceutics, 1(1): 29 –33.

36.    Wilson, D., Arada, M. d. l. A., Alegret, S. and del Valle, M. (2010). Lead (II) ion selective electrodes with PVC membranes based on two bis-thioureas as ionophore: 1,3-bis(N’-benzoylthioureido)benzene and 1,3-bis(N’-furoylthioureido)benzene. Journal of Hazardous Material, 181: 140 –146.

37.    Zhang, Y. –M., Pang, H. –X., Cao, C. and Wei, T.-B. (2007). Synthesis, crystal structure and biological activity of a new complex, + bis (1,1-diethyl-3-(3-fluorobenzoyl)-thiourea)nickel(II). Indian Journal of Chemistry Section A-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 46A: 1787 – 1791.

38.    Jadhao, S. Z. and Rathod, M. S. (2012). Synthesis and Structural Investigation of Zinc Metal-Ligand (Thiourea Derivative) Complexes. Journal of Chemical and Pharmaceutical Research, 4(3): 1562 –1565.

39.    Schwade, V. D., Kirsten, L., Hagenbach, A., Lang E. S. and Abram, U. (2013). Indium (III), lead (II), gold (I) and copper (II) complexes with isophthaloylbis(thiourea) ligands. Polyhedron, 55: 155 –161.

40.    Kumar, A., Kumar, V., Diwan, U. and Upadhyay, K. K. (2013). Highly sensitive and selective naked-eye detection of Cu2+ in aqueous medium by a ninhydrin-quinoxaline derivative. Sensors and Actuator B, 176: 420 – 427.




Previous                    Content                    Next