Malaysian Journal of Analytical Sciences Vol 20 No 1 (2016): 85 - 90

 

 

 

CHARACTERIZATION AND ANTIMICROBIAL STUDIES OF FIVE SUBSTITUTED BIS-THIOUREAS

 

(Pencirian dan Kajian Antimikrobial Terhadap Lima Sebatian Bis-Tiourea)

 

Nurulain Kamalulazmy, Sahilah Abd Mutalib, Fatin Ilyani Nasir, Nurul Izzaty Hassan*

 

School of Chemical Sciences and Food Technology,

Faculty of Science and Technology,

 Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: drizz@ukm.edu.my

 

 

Received: 4 November 2015; Accepted: 4 January 2016

 

 

Abstract

Thioureas play an important role in medicinal chemistry and agricultures due to their biological activity such as antibacterial, antifungal, antiviral, herbicides, rodenticides, phenoloxidase enzymatic inhibitors, anti-HIV and anti-tumor agents. In this study, five substituted bis-thioureas have been synthesized. The isophataloyl chloride and 2,6- pyridinedicarbonyl dichloride were easily converted to bis-isothiocyanate compound via the reaction with ammonium thiocyanate by solid–liquid phase transfer catalysis of polyethylene glycol-400 (PEG-400). Bis-isothiocyanate compound was reacted with aniline derivatives to produce substituted bis-thioureas in good yield at room temperature. All the novel compounds were obtained as yellow solid after recrystallization using DMF/EtOH/H2O. Their chemical structures were confirmed by Infrared spectrosopy (IR), Nuclear Magnetic Resonance (NMR) 1H and 13C and mass spectrometry. The five synthesized compounds were screened for antimicrobial activities using disc diffusion method for antimicrobial activity against Gram-positive bacteria (Bacillus Subtilis and Staphylococcus Aureus), Gram-negative bacteria (Escherichia Coli and Salmonella Typhi) and a mold (Aspergillus Niger). All tested compounds showed low antimicrobial activity since the diameter of inhibition zone (IZ) measure was less than positive control inhibition zone.

 

Keywords: bis-thiourea, antimicrobial activities, PEG-400

 

Abstrak

Sebatian tiourea memainkan peranan penting dalam kimia perubatan dan pertanian kerana sebatian ini mempunyai aktiviti biologi seperti antibakteria, antivirus, herbisid, rodentisid, perencat enzim fenoloksidase, anti-HIV dan agen anti-tumor. Lima sebatian bis-tiourea telah disintesis dalam kajian ini. Sebatian bis-isotiosianat disintesis dengan mudah melalui tindak balas di antara sebatian isofataloil klorida atau 2,6-piridinadikarbonil diklorida dengan ammonium tiosianat melalui pemindahan mangkin fasa pepejal-cecair polietilena glikol-400 (PEG-400). Seterusnya, sebatian bis-isotiosianat ditindak balas dengan sebatian amina bagi menghasilkan sebatian bis-tiourea dengan hasil yang baik pada suhu bilik. Semua sebatian diperolehi dalam bentuk pepejal bewarna kuning selepas penghabluran semula menggunakan pelarut DMF/EtOH/H2O. Pencirian struktur sebatian dibuat melalui kaedah spektroskopi Infra Merah (IR), Resonans Magnet Nukleus (NMR) 1H dan 13C dan spektrometer jisim (MS). Kajian aktiviti antimikrob bagi lima sebatian yang telah disintesis dibuat melalui kaedah resapan cakera melawan bakteria Gram positif (Bacillus Subtilis and Staphylococcus Aureus),bakteria Gram negatif (Escherichia Coli and Salmonella Typhi) dan kulat (Aspergillus Niger). Semua sebatian menunjukkan aktiviti antimikrob yang diperolehi rendah kerana diameter zon perencatannya (IZ) lebih kecil daripada zon perencatan kawalan positif.

 

Kata kunci: bis-tiourea, aktiviti antimikrob, PEG-400

 

References

1.       Neucki, M. (1873). Zur kenntniss des sulfoharnstoffs. Berichte der Deuschen Chemischen Gesellschaft, 6 (1): 598 – 600.

2.       Neu, H. C. (1992). The crisis in antibiotic resistance. Science, 257: 1064 – 1073.

3.       Michel, M. and Gutmann, L. (1997). Methicillin-resistant Staphyllococus aureus and vancomycin-resistant enterococci: therapeut realities and possibilities. Lancet, 349: 1901–1906.

4.       Normark, B. H. and Normark, S. (2002). Evolution and spread of antibiotic resistance. Journal of Internal Medicine, 252: 91 – 106.

5.       Sun, J., Cai, H. and Mei et al. (2010). Molecular docking and QSAR studies on substituted acyl(thio)urea and thiadiazolo [2,3-ɑ] pyrimidine derivatives as potent inhibitors of influenza virus neuraminidase. Chemical Biology and Drug Design, 76 (3): 245 – 254.

6.       Sun, C., Zhang, X., Huang, H. and Zhou, P. (2006). Synthesis and evaluation of a new series of substituted acyl(thio)urea and thiadiazolo [2,3-ɑ] pyrimidine derivatives as potent inhibitors of influenza virus neuraminidase. Bioorganic and Medicinal Chemistry, 14 (24): 8574 – 8581.

7.       Zhong, Z., Xing, R., Liu, S., Wang, L., Cai, S. and Li, P. (2008). Synthesis of acyl thiourea derivatives of chitosan and their antimicrobial activities in vitro. Carbohydrate Research, 343 (3): 566 – 570.

8.       Wang, F. H., Qin, Z. L. and Huang, Q. (2006). Synthesis and fungicidal activity of 1,3,4-oxadiazole substituted acylthioureas. Frontiers of Chemistry in China, 1: 112.

9.       Ke, S. Y. and Xue, S. J. (2006). Synthesis and herbicidal activity of N(O)thioureas derivatives and related fused heterocyclic compounds. Arkivoc, 10: 63 – 68.

10.    Xiao, L., Liu, C. J. & Li, Y. P. (2009). Ultrasound Promoted Synthesis of Bis(substituted pyrazol-4- ylcarbonyl)-Substituted Thioureas. Molecules, 14(4): 1423 –1428.

11.    Vig, R., Mao, C., Venkatachalam, T. K., Tuel-Ahlgren, L., Sudbeck, E. A. and Uckun, A. (1998). Rational design and synthesis of phenethyl-5-bromopyridyl thiourea derivatives as potent non- nucleoside inhibitors of HIV reverse transcriptase. Bioorganic and Medicinal Chemistry, 6 (10): 1789 – 1797.

12.    Peng, H., Liang, Y., Chen, L., Fu, L., Wang, H. and He, H. (2011). Efficient Synthesis and Biological Evaluation of 1,3-benzenedicarbonyl dithioureas. Bioorganic & Medicinal Chemistry Letters, 21: 1102 1104.

13.    Klein, J. J. and Hecht, S. (2012). Synthesis of a new class of bis(thiourea)hydrazide pseudopeptides as potential inhibitors of β-sheet aggregation. Organic Letters 14 (11): 330 – 333.

14.    Rampalakos, C. and Wulff, D. D. (2008). A Novel Bis-Thiourea Organocatalyst for the Asymmetric Aza-Henry Reaction. Advanced Synthesis & Catalysis, 350 (11-12): 1785 – 1790.

15.    Verlinden, B. K., Beer de, M., Pachaiyappan, B., Besaans, E., Andayi, W. A., Reader, J., Niemand, J., Biljon van, R., Guy, K., Egan, T., Woster, P. M. & Birkholtz, L-M. (2015). Interrogating alkyl and arylalkylpolyamino (bis)urea and (bis)thiourea isosteres as potent antimalarial chemotypes against multiple lifecycle forms of Plasmodium falciparum parasites. Bioorganic & Medicinal Chemistry, 23 (16): 5131 – 5143.

16.    Takacs-Novak, K., Noszal, B., Hermecz, I., Kereszturi, G., Podanyi, B. and Szasz, G. (1990). Protonation Equilibria of Quinolone. Antibacterials. Journal of Pharmaceutical Sciences, 79 (11): 1023 – 1028.

17.    Xicun, W., Juan, L. and Zheng, L. (2005). An expenditious and solvent-free approach to substituted bis-thioureas and bis-thiosemicarbazides. Journal of Chemical Research, 791 792.

18.    Jamil, M., Zubair, M., Farid, M. A., Rashid, U., Rasool, N. and Islam, S. (2013). Antibacterial, cytotoxicity studies and characterization of some newly synthesized symmetrical N3,N3’-Bis (disubstitued)isophathalyl-bis(thioureas) and their Cu(II) and Ni (II) complexes. Journal of Chemistry, Hindawi.

19.    Yamin, B. M. and Osman, U. M. (2011). Acta Cryst. E67, o1286.

20.    Thiam, E. I., Diop, M., Gaye, M., Sall, A. S. and Barry, A. H. (2008). Acta Cryst. E64, o776.

 

 




Previous                    Content                    Next