Malaysian Journal of Analytical Sciences Vol 20 No 2 (2016): 303 - 308

 

 

 

HYDROGEN PRODUCTION FROM GASIFICATION OF PALM KERNEL SHELL IN THE PRESENCE OF Fe/CeO2 CATALYSTS

 

(Penghasilan Hidrogen daripada Pengegasan Isirung Kelapa Sawit dengan Kehadiran Mangkin Fe/CeO2)

 

Anita Ramli1*, Mas Fatiha Mohamad2, Suzana Yusup2, Taufiq Yap Yun Hin3

 

1Department of Fundamental and Applied Sciences

2Department of Chemical Engineering

Universiti Teknologi PETRONAS, 32600 Bandar Seri Iskandar, Perak, Malaysia.

3Department of Chemistry,

 Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author: anita_ramli@petronas.com.my

 

 

Received: 24 February 2015; Accepted: 27 October 2015

 

 

Abstract

Biohydrogen is a renewable source of clean fuel and energy which can be derived from biomass. One of the suitable candidate as a source of biomass is palm kernel shell (PKS). Our initial work shows that biohydrogen may be produced from PKS in the presence of zeolite supported catalysts. The potential of using cerium oxide (CeO2) supported catalysts for the production of biohydrogen from PKS is explored in this work using 2.5 – 10 % Fe loading. The catalysts were prepared by incipient wetness impregnation method and calcined at 500 oC for 16 h. The physicochemical properties of these catalysts were characterized using BET and XRD. The catalysts were tested in dry and steam gasification of PKS at 700 oC using PKS feeding rate of 2 g h-1 under N2 atmosphere with biomass to catalyst ratio of 3:1 (wt/wt). Steam to biomass ratio of 3.5:1 (wt/wt) was used in steam gasification reaction. The gaseous products were analyzed using an on-line gas chromatography equipped with thermal conductivity detectors (TCD) and fitted with Molsieve 5A and Hayesep Q columns. Result shows that 2.5 % Fe/CeO2 gave the highest hydrogen production in both the dry and steam gasification of PKS.

 

Keywords: biohydrogen, palm kernel shell, ceria supported catalysts, gasification

 

Abstrak

Biohidrogen adalah sumber bahan api yang boleh diperbaharui daripada sumber biomas. Isirung kelapa sawit (PKS) merupakan salah satu sumber biomas yang sesuai digunakan umtuk tujuan ini. Kajian awal menunjukkan biohidrogen boleh dihasilkan daripada PKS dengan menggunakan mangkin berpenyokong zeolite. Dalam kajian ini, muatan mangkin 2.5 – 10 % logam Fe berpenyokong cerium oksida (CeO2) digunakan untuk meningkatkan penghasilan biohydrogen daripada PKS. Pemangkin disediakan menggunakan kaedah pengisitepuan pembasahan permulaan dan dikalsinkan pada suhu 500 oC selama 16 jam. Sifat fizikal kimia pemangkin ini dianalisa menggunakan teknik BET dan XRD. Kereaktifan mangkin untuk penghasilan biohidrogen diuji dalam pengegasan kering dan berstim pada suhu 700 oC dengan PKS diperkenalkan pada kadar 2g h-1 dan nisbah PKS kepada pemangkin adalah 3:1 (wt/wt). Nisbah stim kepada PKS 3.5: 1 (wt/wt) telah ditetapkan dalam eksperimen pengegasan berstim. Gas yang telah dihasilkan telah dianalisa menggunakan kromatograf gas yang dilengkapi pengesan konduktiviti termal (TCD) serta tiub Molsieve 5A dan Hayesep Q. Keputusan kajian menunjukkan penghasilan hidrogen yang maksimum dicapai dengan kehadiran mangkin 2.5 % Fe / CeO2.

 

Kata kunci: biohidrogen, tempurung kelapa sawit, mangkin berpenyokong CeO2, pengegasan

 

References

1.       Balat, M.,  Kirtay, E. and  Balat. H. (2009).  Main routes  for  the thermo-conversion of biomass into fuels  and chemicals. Part 2: Gasification systems Energy Conversion and Management, 50: 3158 – 3168.

2.       Nordgreen, T.,  Liliedahl, T. and  Sjöström. K. (2006).   Metallic iron  as a  tar  breakdown  catalyst  related  to atmospheric fluidized bed gasification of biomass, Fuel, 85: 689 – 694.

3.       Ramli, A.,  Misi, S. E. E.,  Mohamad, M. F. and  Yusup. S. (2013).  H2  Production  from steam gasification of Palm Kernel Shell in the presence of 5% Ni/BEA and 5% Fe/BEA catalysts, Advanced Science Letters, 19:  950 – 954.

4.       Kaspar, J.,  Fornasiero, P.  and  Graziani. M.  (1999).   Metallic   iron as  a  tar  breakdown  catalyst  related  to atmospheric, fluidised bed gasification of biomass, Catalysis Today, 50: 285 – 298.

5.       Tomishige, K.,  Asadullah, M. and Kunimori. K. (2003). Novel catalysts for gasification of biomass  with high conversion efficiency, Catalysis Surveys from Asia, 7: 219 –223.

6.       Pecchi, G.,  Reyes, P. and  Villasenor. J.  (2003).   Fe  supported   catalysts  prepared  by  the  sol-gel  method. Characterization  and  evaluation  in phenol  abatement, Journal of Sol-Gel Science and Technology, 26: 865 – 867.

7.       Reddy, A. S.,  Chen, C., Chien, S., Lin, C., Lin, K. and Chang. S. (2010). Synthesis and characterization of Fe/CeO2 catalysts: epoxidation of cyclohexene, Journal of Molecular Catalysis A, 318: 60 – 67.

8.       Rao, G. R. and Mishra. B. G. (2003). Structural, redox and catalytic chemistry of ceria based materials, Bulletin of the Catalysis Society of India, 2: 122 – 134.

9.       Perez-Alonso, F. J.,  Lopez   Granados, M.,  Ojeda, M.,  Terreros, P.,  Rojas, S.,  Herranz, T.,  Fierro, J. L. G., Gracia, M. and Gancedo, J. R. (2005). Chemical structures of co-precipitated Fe-Ce mixed oxides, Chemistry of Materials, 17: 2329 – 2339.

10.    Tang, L.,  Yamaguchi, D.,  Burke, N., Trimm, D. and  Chiang, K .(2010).  Methane  decomposition over ceria modified iron catalysts, Catalysis Communications, 11: 1215 –1219.

11.    Li, K. Z., Wang, H., Wei, Y. And Yan, D. X.(2009). Selective oxidation of carbon using iron-modified cerium oxide, Journal of Physical Chemistry C, 113: 15288 – 15297.

 




Previous                    Content                    Next