Malaysian Journal of Analytical Sciences Vol 20 No 2 (2016): 309 - 317

 

 

 

DEVELOPMENT OF CELLULOSE NANOFIBRE (CNF) DERIVED FROM KENAF BAST FIBRE AND IT’S POTENTIAL IN ENZYME IMMOBILIZATION SUPPORT

 

(Penghasilan Nano-Gentian Selulosa (CNF) diperolehi daripada Gentian Kulit Kenaf dan Potensinya sebagai Penyokong Pemegunan Enzim)

 

Safwan Sulaiman1, Mohd Noriznan Mokhtar1*, Mohd Nazli Naim1, Azhari Samsu Baharuddin1,

 Mohamad Amran Mohd Salleh2, Alawi Sulaiman3

 

1Department of Process and Food Engineering

2Department of Chemical and Environmental Engineering

Faculty of Engineering,

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

3Faculty of Plantation and Agrotechnology,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: noriznan@upm.edu.my

 

 

Received: 24 February 2015; Accepted: 27 October 2015

 

 

Abstract

This research mainly focuses on developing a natural cellulose nanofibre (CNF) from kenaf bast fibre and its potential for enzyme immobilization support. CNF was isolated by using a combination between chemical and mechanical treatments such as alkaline process and high-intensity ultrasonication process to increase the efficiency of hemicellulose and lignin removal, and to reduce its size into nano-order. The morphological study was carried out by using scanning electron microscope (SEM), indicating most of CNF diameter in range of 50-90 nm was obtained. The result of chemical analysis shows that cellulose content of raw bast fibre, bleached pulp fibre and CNF are 66.4 %, 83.7 % and 90.0 %, respectively. By decreasing the size of cellulose fibre, it increases the number of (O–H) group on the surface that plays as important role in enzyme immobilization. Covalent immobilization of cyclodextrin glucanotransferase (CGTase) onto CNF support resulted in about 95.0 % of protein loading with 69.48 % of enzyme activity, indicating high immobilization yield of enzyme. The enzymatic reaction of immobilized CGTase was able to produce more than 40 % yield of α-CD. Reusability profile of immobilized CGTase resulted in more than 60 % of retained activity up to 7 cycles. Therefore, the CNF is highly potential to be applied as enzyme immobilization support.

 

Keywords: cellulose nanofibre (CNF), kenaf, enzyme immobilization; cyclodextrin glucanotransferase (CGTase), chemical and mechanical treatments   

 

Abstrak

Kajian ini memberi tumpuan terutamanya kepada penghasilan nano-gentian selulosa (CNF) semulajadi daripada gentian lapisan kulit kenaf dan potensinya sebagai penyokong pemegunan enzim. CNF dihasilkan dengan menggunakan gabungan antara rawatan kimia dan mekanikal seperti proses alkali dan proses ultrasonikasi berintensiti tinggi untuk meningkatkan kadar kecekapan penyingkiran hemiselulosa dan lignin, dan pengurangan saiz kepada nano. Kajian morfologi menggunakan mikroskop imbasan elektron (SEM), menunjukkan sebahagian besar daripada saiz diameter CNF diperolehi dalam julat 50-90 nm. Hasil kajian analisis kimia menunjukkan bahawa kandungan selulosa daripada gentian mentah, gentian pulpa dan CNF masing-masingnya adalah 66.4 %, 83.7 % dan 90.0 %. Dengan mengurangkan saiz diameter gentian selulosa, ia meningkatkan bilangan kumpulan (O-H) di permukaan sokongan yang mana memainkan peranan yang penting dalam pemegunan enzim. Pemegunan Siklodektrin Glukanotransferase (CGTase) secara kovalen pada CNF menunjukkan kira-kira 95.0 % muatan protein dengan 69.48 % aktiviti enzim, menunjukkan pemegunan enzim yang tinggi terhasil. Tindak balas berenzim CGTase terpegun juga mampu menghasilkan lebih daripada 40 % pengeluaran α-CD. Kitaran kebolehulangan enzim terpegun menunjukkan lebih daripada 60 % daripada aktivitinya dapat dikekalkan selama 7 kitaran. Oleh itu, CNF sangat berpotensi untuk digunakan sebagai penyokong pemegunan enzim.

 

Kata kunci: gentian-nano selulosa (CNF), kenaf, pemegunan enzim, siklodektrin glukanotransferase (CGTase), rawatan kimia dan mekanikal

 

References

1.       Faruk, O., Bledzki, A. K., Fink, H.-P. and Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progess in Polymer Science, 37(11): 1552 –1596.

2.       Li, Y., Mai, Y.-W. and Ye, L. (2000). Sisal fibre and its composites: a review of recent developments. Composite Science and Technology, 60(11): 2037 – 2055.

3.       Gardner, D. J., Oporto, G. S., Mills, R. and Samir, M. A. S. A. (2008). Adhesion and surface issues in cellulose and nanocellulose. Journal of Adhesion Science and Technology, 22(5-6): 545 – 567.

4.       Brinchi, L., Cotana, F., Fortunati, E. and Kenny, J. M. (2013). Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydrate Polymer, 94(1): 154 – 169.

5.       Zhang, S. (2003). Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnology, 21(10): 1171 – 1178.

6.       Kim, J., Grate, J. W. and Wang, P. (2006). Nanostructures for enzyme stabilization. Chemical Engineering Science, 61(3): 1017 – 1026.

7.       Kim, J., Grate, J. W. and Wang, P. (2008). Nanobiocatalysis and its potential applications. Trends Biotechnology, 26(11): 639 – 646.

8.       Cao, L. (2006). Covalent Enzyme Immobilization. In Carrier-bound Immobilized Enzymes. Wiley-VCH Verlag GmbH & Co. KGaA (pp. 169–316)..

9.       Karimi, S., Tahir, P. M., Karimi, A., Dufresne, A. and Abdulkhani, A. (2014). Kenaf bast cellulosic fibers hierarchy: A comprehensive approach from micro to nano. Carbohydrate Polymer, 101: 878 –885.

10.    Jonoobi, M., Niska, K. O., Harun, J., Misra, M., Shakeri, A., Misra, M. and Oksman, K. (2009). Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources, 4(2): 626 – 639.

11.    Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M. and Hai, Y. (2011). Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymer, 83(4): 1804 – 1811.

12.    Van Soest, P. J., Robertson, J. B. and Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10): 3583 – 3597.

13.    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2): 248 – 254.

14.    Abdel-Naby, M. A., Ismail, A.-M. S., Abdel-Fattah, A. M., and Abdel-Fattah, A. F. (1999). Preparation and some properties of immobilized Penicillium funiculosum 258 dextranase. Process Biochemistry, 34(4): 391 – 398.

15.    Chen, W., Yu, H. and Liu, Y. (2011). Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80nm from bamboo fibers. Carbohydrate Polymer, 86(2): 453 – 461.

16.    Abe, K. and Yano, H. (2009). Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose, 16(6): 1017 – 1023.

17.    Joonobi, M., Harun, J., Tahir, P. M., Zaini, L. H., SaifulAzry, S. and Makinejad, M. D. (2010). Characteristics of nanofibres extracted from kenaf core. BioResources, 5(4): 2556 – 2566.

18.    Sulaiman, S., Mokhtar, M. N., Naim, M. N., Baharuddin, A. S. and Sulaiman, A. (2014). A Review: potential usage of cellulose nanofibers (CNF) for enzyme immobilization via covalent interactions. Applied Biochemistry and Biotechnology, 175(4): 1817 – 1842.

19.    Redeker, E. S., Ta, D. T., Cortens, D., Billen, B., Guedens, W. and Adriaensens, P. (2013). Protein engineering for directed immobilization. Bioconjugate Chemistry, 24(11): 1761 – 1777.

20.    Chen, W., Yu, H., Liu, Y., Hai, Y., Zhang, M. and Chen, P. (2011). Isolation and characterization of cellulose nanofibers from four plant cellulose fibers using a chemical-ultrasonic process. Cellulose, 18(2): 433 – 442.

21.    Karim, M. R. and Hashinaga, F. (2002). Preparation and properties of immobilized pummelo limonoid glucosyltransferase. Process Biochemistry, 38(5): 809 – 814.

22.    Martı́n, M. T., Plou, F. J., Alcalde, M. and Ballesteros, A. (2003). Immobilization on Eupergit C of cyclodextrin glucosyltransferase (CGTase) and properties of the immobilized biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 21(4–6): 299 – 308.

23.    Ivanova, V. (2010). Immobilization of cyclodextrin glucanotransferase from Paenibacillus macerans ATCC 8244 on magnetic carriers and production of cyclodextrins. Biotechnology and Biotechnical Equipment, 24: 516 – 528.

24.    Shahrazi, S., Saallah, S., Mokhtar, M. N., Baharuddin, A. S. and Yunos, K. F. M. (2013). Dynamic mathematical modelling of reaction kinetics for cyclodextrins production from different starch sources using Bacillus macerans cyclodextrin glucanotransferase. American Journal of Biochemistry and Biotechnology, 9(2): 195 – 205.

 

 




Previous                    Content                    Next