Malaysian Journal of Analytical Sciences Vol 20 No 2 (2016): 413 - 422

 

 

 

CHEMICAL AND BIOLOGICAL ANALYSES OF MALAYSIAN STINGLESS BEE PROPOLIS EXTRACTS

 

(Analysis Kimia dan Biologi Ekstrak Propolis Lebah Kelulut Malaysia)

 

Nurhamizah Ibrahim1*, Nurul Farah Shakila Mohd Niza1, Muhammad Muslim Mohd Rodi2, Abdul Jamil Zakaria2, Zhari Ismail3, Khamsah Suryati Mohd1,2

 

1School of Plant Science and Biotechnology, Faculty of Bioresources and Food Industry

2Agriculture Production and Food Innovation Research Institute (AGROPOLIS UniSZA)

Universiti Sultan Zainal Abidin, Tembila Campus, 22200 Besut, Terengganu, Malaysia

3School of Pharmaceutical Sciences,

Universiti Sains Malaysia, 11800 Penang, Malaysia

 

*Corresponding author: caldinamiez@gmail.com

 

 

Received: 14 April 2015; Accepted: 30 November 2015

 

 

Abstract

The aim of this study is to evaluate chemical and biological profile of methanol extracts from Malaysian propolis produced by two commonly found stingless bee species, Heterotrigona itama (MHI) and Geniotrigona thoracica (MGT). Test samples were analyzed for physicochemical parameters such as moisture, fat, crude fibre, crude protein, carbohydrate and ash content. Tests for phytochemical screening by thin layer chromatography of both extracts revealed that presence of terpenoids, flavonoids, phenols and essential oils but steroids, saponin and coumarins only occur in MHI. Both extracts displayed a characteristic profile and vary from each other. Accordingly, MHI possess higher antioxidant activity with an IC50 of 15.0 ± 0.21 ug/mL compared to MGT with IC50 of 270.0 ± 0.19 ug/mL. MHI showed moderate nitric oxide scavenging activity, while MGT only showed mild inhibition. Antidiabetic activity was determined by α-glucosidase inhibition and found significantly better than that of acarbose (positive control). In conclusion, data gathered in this study revealed that bee species play role in determining the chemical and biological profile of particular propolis and should put into account in decision of further development for propolis.

 

Keywords:  physico-chemical, phytochemical, TLC profiling, antioxidant, antidiabetic

 

Abstrak

Tujuan kajian ini adalah untuk menilai profil kimia dan biologi ekstrak metanol propolis dari Malaysia yang dihasilkan oleh dua species lebah kelulut yang biasa dijumpai, Heterotrigona itama (MHI) dan Geniotrigona thoracica (MGT). Sampel telah dianalisis untuk parameter fizikokimia seperti kelembapan, lemak, serat kasar, protein mentah, karbohidrat dan kandungan abu. Pemeriksaan keatas analisis fitokimia menggunakan kromatografi lapisan nipis untuk kedua-dua ekstrak menunjukkan kehadiran terpenoid, flavonoid dan minyak pati tetapi steroid, saponin dan coumarin hanya wujud dalam MHI. Kedua – dua ekstrak menunjukkan profil yang berbeza antara satu sama lain. Sehubungan itu juga, MHI mempunyai aktiviti antioksidan yang lebih tinggi dengan IC50 15.0 ± 0.21 ug/mL berbanding MGT (270.0 ± 0.19 ug/mL). MHI menunjukkan aktiviti perencatan nitrik oksida yang sederhana, sementara MGT menunjukkan perencatan yang sedikit sahaja. Aktiviti antidiabetik telah ditentukan menggunakan perencatan α-glukosida dan didapati lebih baik secara signifikan daripada acarbose (kawalan positif). Kesimpulannya, data yang dikutip dalam kajian ini menunjukkan bahawa spesies lebah memainkan peranan dalam menentukan profil kimia dan biologi propolis tertentu dan perlu dipertimbangkan dalam membuat keputusan untuk pembangunan propolis.

 

Kata Kunci: fisikokimia, fitokimia, profil KLN, antioksidan, antidiabetik 

 

References

1.       Souza, R. M., Souza De, M. C., Patitucci, M. L. and Silva, J. F. (2007). Evaluation of antioxidant and antimicrobial activities and characterization of bioactive components of two Brazilian propolis samples using a pKa-guided fraction-ation. Z Naturforsch, 62: 801 - 807.

2.       Ledon, N., Casaco, A., Gonzalez, R., Merino, N., Gonzalez, A. and Tolon, Z. (1997). Antipsoriatic, anti-inflammatory, and analgesic effects of an extract of red propolis. Acta Pharmacologica Sinica, 18(3): 274 -276.

3.       Barros, M. P., Lemos. M., Maistro, E. L., Leite, M. F., Sousa, J. P., Bastos, J. K. and Andrade, S. F. (2008). Evaluation of antiulcer activity of the main phenolic acids found in Brazilian Green Propolis. Journal of Ethnoparmacology, 120: 372 - 377.

4.       Teixeira, É. W., Message, D., Negri, G., Salatino, A. and Stringheta, P. C. (2010). Seasonal variation, chemical composition and antioxidant activity of Brazilian propolis samples. Evidence-Based Complementary and Alternative Medicine, 7(3): 307 - 315.

5.       Basnet, P., Matsushige, K., Hase, K., Kadota, S. and Namba, T. (1996). Four di-O-caffeoyl quinic acid derivatives from propolis. Potent hepatoprotective activity in experimental liver injury models. Biological and Pharmaceutical Bulletin, 19:1479 - 1484.

6.       Suzuki, I., Hayashi, I., Takaki, T., Groveman, D. S. and Fujimiya, Y. (2002). Anti-tumor and anticytopenic effects of aqueous extracts of propolis in combination with chemotherapeutic agents. Cancer Biotherapy and Radiopharmaceuticals, 17: 553-560.

7.       Duangphakdee, O., Koeniger, N., Deowanish, S., Hepburn, H. R. and Wongsiri, S. (2009). Ant repellent resins of honeybees and stingless bees. Insectes sociaux, 56: 333 - 339.

8.       Righi, A. A., Negri, G. and Salatino, A. (2013). Comparative chemistry of propolis from eigght Brazilian localities. Evidence-Based Complementary and Alternative Medicine 2013: 1 - 15..

9.       Popova, M., Bankova, V., Bogdanov, S., Tsvetkova, I., Naydenski, C., Marcazzan, G. L. and Sabatini, A. G. (2007). Chemical characteristics of poplar type propolis of different geographic origin. Apidologie, 38: 306 - 311.

10.    Sforcin, J. M. and Bankova, V. (2011). Propolis: Is there a potential for the development of drugs? Journal of Ethnopharmacology, 133: 253 - 260.

11.    Simone-Finstrom, M. and Spivak, M. (2010). Propolis and bee health: the natural history and significance of resin use by honey bees. Apidologie, 41: 295 - 311.

12.    Marcucci, M. C. (1995). Propolis: chemical composition, biological properties and the therapeutic activity. Apidologie, 26: 83 - 99.

13.    Markham, K. R., Mitchell, K. A., Wilins, A. L., Daldy, J. A. and Lu, Y. (1996). HPLC and GC-MS identification of the major organic constituents in New Zealand propolis. Phytochemistry, 42: 205 - 211.

14.    Bankova, V., Castro De, S. & Marcucci, M. (2000). Recent advances in chemistry and plant origin. Apidologie, 31: 3 – 15.

15.    Chen, Y. W., Wu, S. W., Ho, K. K, Lin, S. B., Huang, C. Y. and Chen, C. N. (1998). Characterization of Taiwanese propolis collected from different locations and seasons. Journal Science and Food Agriculture, 88: 412 - 419.

16.    Popova, M., Chen, C. N., Chen, P. Y., Huang, C. Y. & Bankova, V. (2010). A validated spectrophotometric method for quantification of prenylated flavonones in Pacific propolis from Taiwan. Phytochemical Analysis, 21: 186 - 191.

17.    The Siddha Formulary of India.(1992). Part-I. Department of ISM & H, Ministry of Health & Family Welfare. Government of India. New Delhi.

18.    World Health Organisation (1998). Quality Control Methods of Medicinal Plant Materials.Geneva.

19.    Trease, G. E. and Evans, W. C. (1983). Textbook of Pharmacognosy. 12th edn. Balliese Tindall and Company Publisher, London. pp. 343 - 383.

20.    Brand-Williams, W., Cuvelier, M. E. and Berset, C. (1995). Use of free radical method to evaluate antioxidant activity. LWT-Food science and Technology 28: 25 - 30.

21.    Ho, S. C., Tang, Y. L., Lin, S. M. and Liew, Y. F. (2010). Evaluation of peroxynitrite scavenging capacities of several commonly used fresh spices. Food Chemistry, 119: 1102 - 1107.

22.    Sancheti, S., Sancheti, S. and Seo, S. Y. (2010). Evaluation of antiglycosidase and anticholinesterase activities of Boehmeria nivea. Pakistan Journal of Pharmaceutical Sciences, 23: 236 - 240.

23.    Emmanuel, T., Alfred, N. T., Pierre, B., Paul, S., Forche, P. A., Joseph, T. M., Nestor, F. F. T. and Robert, N. (2014). Phytochemical screening, antioxidant activity, total polyhenols and flavonoids content of different extracts of propolis from Tekel (Ngaoundal, Adamawa region, Cameroon). Journal of Phytopharmacology, 3(5): 321 - 329.

24.    Buenos, M. I., Cunha, I. B. S., Marcucci, M. C. and Marassi, M. (1997). Evidence of lead contamination in propolis by X-Ray fluroscence analysis. In the International Apicultural Congress of Apimondia. The Centenary Congress Apimondia Publishing House, Bucharest, Romania.

25.    Bankova, V. (2005). Chemical diversity of propolis and the problem of standardization. Journal of Ethnopharmacology, 100: 114-117.

26.    Pandey,  M. K., Singh, G. N., Sharma Rajeev Kr and Sneh Lata. (2012). Standardization of Yakrit Plihantak Churna: An Ayurvedic Poly herbal formulation. International Journal of Pharmaceutical Sciences and Research, 3 (1): 171 - 176.

27.    Myint, M. T., Aljun, H. B., Yasuhiro, T. and Kiyoshi, M. (2003). Inhibitors of nitric oxide (NO) production in murine macrophage-like J774.I cells from Brazillian propolis. Journal Tradional Medicine, 20: 22 - 29.

28.    Fuliang, H. U., Hepburn, H. R., Xuan, H., Chen, M., Daya, S. and Radloff, S. E. (2005). Effects of propolis on blood glucose, blood lipid and free radicals in Rats with diabetes mellitus. Pharmacology Research, 51:147 – 52.

29.    Tasleem, A., Bhawana, S., Anjum, G., Vijay, K. and Rajesh, D. (2014). Anti-diabetic agents from medicinal plants: A review. Chemistry Biology Letters, 1(1): 1 - 13.

 




Previous                    Content                    Next