Malaysian Journal of Analytical Sciences Vol 20 No 2 (2016): 423 - 435

 

 

 

CHARACTERIZATION OF CaCO3 MICROSPHERES FABRICATED USING DISTILLED WATER 

 

(Pencirian CaCO3 Mikrosfera Difabrikasi Menggunakan Air Suling)

 

Intan Nabila Sabri1, Nadiawati Alias2, Abdul Manaf Ali2, Javeed Shaikh Mohammed1*

 

1Faculty of Innovative Design and Technology,

Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Terengganu, Terengganu, Malaysia

2Faculty of Bioresources and Food Industry,

Universiti Sultan Zainal Abidin, Besut Campus, 22200 Tembila, Terengganu, Malaysia

 

*Corresponding author: javeedsm@unisza.edu.my

 

 

Received: 14 April 2015; Accepted: 30 November 2015

 

 

Abstract

Calcium carbonate (CaCO3) microspheres (μ-spheres) are widely used as inorganic templates (or cores) for fabricating nano-engineered microcapsules. Deionized water is commonly used in the fabrication of CaCO3 μ-spheres using precipitation reaction between calcium chloride (CaCl2) and sodium carbonate (Na2CO3) solutions under vigorous stirring. However, in the current work distilled water was used throughout the experiments. Furthermore, two simple fabrication approaches, namely membrane filtration and centrifugation approaches, were used in order to understand the effect of different experimental factors on the size and shape of CaCO3 μ-spheres. For the membrane filtration approach, the experimental factors tested included mixing procedure of solutions, stirring speeds, drying techniques, and types of filter paper used. For the centrifugation approach, the experimental factors tested included mixing procedure of solutions, stirring speeds, centrifugation times, drying techniques, and quantity of washing agents used. The size measurements and shape of the CaCO3 μ-spheres were investigated using compound microscopy. Scanning electron microscopy (SEM) was used to observe the fine surface morphological details of the CaCO3 μ-spheres. Overall results indicate that the centrifugation approach can yield better CaCO3 μ-spheres as compared to the membrane filtration approach in terms of narrow size distribution and uniform spherical shape. The fabricated CaCO3 μ-spheres can be used as inorganic templates for fabricating nano-engineered microcapsules.

 

Keywords: CaCO3 microspheres, scanning electron microscopy (SEM), compound microscopy

 

Abstrak

Kalsium karbonat (CaCO3) mikrosfera (µ-sfera) digunakan secara meluas sebagai templat bukan organik (atau teras) untuk memfabrikasi mikrokapsul nano-kejuruteraan. Air ternyahion lazim digunakan dalam fabrikasi CaCO3 µ-sfera dengan menggunakan tindak balas pemendakan antara larutan kalsium klorida (CaCl2) dan natrium karbonat (Na2CO3) dengan pengacauan yang laju. Namun begitu, dalam kerja-kerja semasa air suling telah digunakan sepanjang eksperimen. Dua teknik fabrikasi yang ringkas, iaitu teknik penapisan membran dan pengemparan telah digunakan untuk memahami kesan faktor eksperimen yang berbeza terhadap saiz dan bentuk CaCO3 μ-sfera. Bagi teknik penapisan membran, faktor – faktor eksperimen yang diuji termasuk prosedur pencampuran larutan, kelajuan pengacauan, teknik pengeringan, dan jenis kertas penapis yang digunakan. Bagi teknik pegemparan, faktor – faktor eksperimen yang diuji pula termasuk prosedur pencampuran larutan, kelajuan pengacauan, masa pengemparan, teknik pengeringan, dan kuantiti agen pembasuhan yang digunakan. Ukuran saiz dan bentuk CaCO3 μ-sfera telah dikaji dengan menggunakan mikroskopi sebatian. Mikroskopi elektron pengimbasan (SEM) digunakan untuk meneliti morfologi permukaan halus CaCO3 μ-sfera. Keputusan kajian menunjukkan bahawa teknik pengemparan mampu menghasilkan CaCO3 μ-sfera lebih baik berbanding teknik penapisan membran dari segi taburan saiz yang kecil dan berbentuk sfera yang seragam. Rekaan CaCO3 μ-sfera boleh digunakan sebagai templat bukan organik untuk fabrikasi mikrokapsul nano-kejuruteraan.

 

Kata kunci: CaCO3 microsfera, mikroskop elektron pengimbasan (SEM), mikroskopi sebatian

 

References

1.       Petrov, A. I., Volodkin, D. V. and Sukhorukov, G. B. (2005). Protein-calcium carbonate coprecipitation: A tool for protein encapsulation. Biotechnology Progress, 21: 918 – 925.

2.       De Temmerman, M.-L., Demeester, J., De Vos, F. and De Smedt, S. C. (2011). Encapsulation performance of layer-by-layer microcapsules for proteins. Biomacromolecules, 12: 1283 – 1289.

3.       Chapel, J.-P. and Berret, J.-F. (2012). Versatile electrostatic assembly of nanoparticles and polyelectrolytes: Coating, clustering and layer-by-layer processes. Current Opinion in Colloid and Interface Science, 17: 97 – 105.

4.       Shimpi, N. and Mishra, S. (2010). Synthesis of nanoparticles and its effect on properties of elastomeric nanocomposites. Journal of Nanoparticle Research, 12: 2093 – 2099.

5.       Mishra, S. and Shimpi, N. (2005). Comparison of nano CaCO3 and flyash filled with styrene butadiene rubber on mechanical and thermal properties. Journal of Scientific & Industrial Research, 64: 744 - 751.

6.       Gumfekar, S., Kunte, K., Ramjee, L., Kate, K. and Sonawane, S. (2011). Synthesis of CaCO 3–P (MMA–BA) nanocomposite and its application in water based alkyd emulsion coating. Progress in Organic Coatings, 72: 632 – 637.

7.       Kirboga, S. and Oner, M. (2013). Effect of the experimental parameters on calcium carbonate precipitation. Chemical Engineering Transactions, 32: 2119 – 2124.

8.       Tai, C. Y. and Chen, C. (2008). Particle morphology, habit, and size control of CaCO3 using reverse microemulsion technique. Chemical Engineering Science, 63: 3632 – 3642.

9.       Hanafy, N. A. N., De Giorgi, M. L., Nobile, C., Rinaldi, R. and Leporatti, S. (2015). Control of colloidal CaCO3 suspension by using biodegradable polymers during fabrication. Beni-Suef University Journal of Basic and Applied Sciences, 4: 60 – 70.

10.    Kitamura, M., Konno, H., Yasui, A. and Masuoka, H. (2002). Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from calcium hydroxide suspensions. Journal of Crystal Growth, 236: 323 – 332.

11.    Koris, A. and Vatai, G. (2002). Dry degumming of vegetable oils by membrane filtration. Desalination, 148: 149 – 153.

12.    Majekodunmi, S. O. (2015). A review on centrifugation in the pharmaceutical industry. Annals of Biomedical Engineering, 5: 67 – 78.

13.    Trippa, G. and Jachuck, R. (2003). Process intensification: precipitation of calcium carbonate using narrow channel reactors. Chemical Engineering Research and Design, 81: 766 –772.

14.    Prabu, S. B., Karunamoorthy, L., Kathiresan, S. and Mohan, B. (2006). Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite. Journal of Materials Processing Technology, 171: 268 – 273.

15.    Kowalczyk, B., Lagzi, I. and Grzybowski, B. A. (2011). Nanoseparations: Strategies for size and/or shape-selective purification of nanoparticles. Current Opinion in Colloid and Interface Science, 16: 135 – 148.

16.    Volodkin, D. V., Petrov, A. I., Prevot, M. and Sukhorukov, G. B. (2004). Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation. Langmuir, 20: 3398 – 3406.

17.    Volodkin, D. V., Larionova, N. I. & Sukhorukov, G. B. (2004). Protein encapsulation via porous CaCO3 microparticles templating. Biomacromolecules, 5: 1962 – 1972.

18.    Lee, S., Park, J.-H., Kwak, D. and Cho, K. (2010). Coral mineralization inspired CaCO3 deposition via CO2 sequestration from the atmosphere. Crystal Growth & Design, 10: 851 – 855.

19.    Ouhenia, S., Chateigner, D., Belkhir, M., Guilmeau, E. & Krauss, C. (2008). Synthesis of calcium carbonate polymorphs in the presence of polyacrylic acid. Journal of Crystal Growth, 310: 2832 –2841.

 




Previous                    Content                    Next