Malaysian Journal of Analytical Sciences Vol 20 No 2 (2016): 444 - 451

 

 

 

THE POTENTIAL OF COCONUT SHELL POWDER (CSP) AND COCONUT SHELL ACTIVATED CARBON (CSAC) COMPOSITES AS ELECTROMAGNETIC INTERFERENCE (EMI) ABSORBING MATERIAL

 

(Potensi Serbuk Tempurung Kelapa (CSP) dan Karbon Teraktif Tempurung Kelapa (CSAC) Sebagai Bahan Penyerap Gangguan Elektromagnatik)

 

Siti Nurbazilah Ab. Jabal1, Yew Been Seok1*, Wee Fwen Hoon2

 

1Faculty of Innovative Design and Technology,

 Universiti Sultan Zainal Abidin, Kampus Gong Badak, 21300 Kuala Terengganu, Terengganu, Malaysia

2Embedded Computing Research Cluster, School of Computer and Communication Engineering,

Universiti Malaysia Perlis, Jalan Kangar-Alor Star, Taman Pertiwi Indah Seriab, 01000 Kangar, Perlis, Malaysia

 

*Corresponding author: bseokyew@unisza.edu.my

 

 

Received: 14 April 2015; Accepted: 30 November 2015

 

 

Abstract

Agriculture waste is potentially useful as an alternative material to absorb and attenuates electromagnetic interference (EMI). This research highlights the use of coconut shell powder (CSP) and coconut shell activated carbon (CSAC) as raw materials with epoxy resin and amine hardener composite to absorb microwave signals over frequency of 1 – 8 GHz. In order to investigate the suitability of these raw materials as EMI absorbing material, carbon composition of the raw materials is determined through CHNS Elemental Analysis. The surface morphology of the raw materials in term of porosity is investigated by using TM3000 Scanning Electron Microscope (SEM). The complex permittivity of the composites is determined by using high temperature dielectric probe in conjunction with Network Analyzer. From the result, the Carbon% of CSP and CSAC is 46.70% and 84.28% respectively. In term of surface morphology, the surface porosity of CSP and CSAC is in the range of 2 µm and 1µm respectively. For the dielectric properties, the dielectric constant and the dielectric loss factor for CSP and CSAC is 4.5767 and 64.8307and 1.2144 and 13.8296 respectively. The materials more potentially useful as substitute materials for electromagnetic interference (EMI) absorbing are discussed.

 

Keywords: agricultural wastes, dielectric properties, carbon composition

 

Abstrak

Sisa pertanian mempunyai potensi untuk digunakan sebagai bahan alternatif untuk menyerap atau melemahkan gangguan elektromagnatik (EMI). Kajian ini menekankan kepada penggunaan serbuk tempurung kelapa (CSP) dan karbon teraktif tempurung kelapa(CSAC) sebagai bahan mentah dengan campuran resin epoksi dan komposit penguat amina untuk menyerap gelombang mikro dalam frekuensi 1 – 8 GHz. Bagi mengkaji  kesesuaian bahan mentah sebagai bahan penyerap gelombang mikro, komposisi karbon dalam bahan mentah ditentukan mengunakan analisis unser CHNS. Liang permukaan bahan mentah pula dikaji mengunakan mikroskop pengimbas elektron TM3000 (SEM). Ketelusan kompleks bagi bahan campuran diukur menggunakan prob dielektrik suhu tinggi dan alat analisis rangkaian. Daripada keputusan yang diperolehi, peratusan karbon dalam CSP dan CSAC adalah sebanyak 46.70 % dan 84.28 %. Manakala dari segi liang permukaan pula, keliangan CSP dan CSAC masing – masing berada dalam lingkungan 2um dan 1um.Bagi sifat dielektrik, pemalar dielektrik untuk CSP dan CSAC masing – masing adalah 4.5767 dan 64.8307. Bagi pembelauan dielektrik, nilai untuk CSP dan CSAC masing – masing adalah 1.2144 dan 13.8296. Isu bahan yang lebih berpotensi untuk digunakan  sebagai bahan penyerap gangguan elektromagnatik (EMI) dibincangkan.

 

Kata kunci: sisa pertanian, sifat dielektrik, komposisi karbon

 

References

1.       Salleh M. K. M., Yahya M., Awang Z., Muhamad W. N. W., Mozi A.M. and Yaacob N. (2011). Single layer coconut shell – based microwave absorber.  IEEE TENCON: pp 1110 – 1113.

2.       Sivakumar, K. and Mohan, N. K. (2010). Performance analysis of downdraft gasifier for agriwaste biomass materials. Indian Journal of Science and Technology, 3: 58 – 60.

3.       Daud, W. M. A. W. and Ali, W. S. W. (2004). Comparison on pore development of activated carbon produced from palm shell and coconut shell. Bioresource Technology, 93: 63 – 69.

4.       Cobb, A., Warms, M., Maurer, E. P.  and Chiesa, S. (2012). Low-tech coconut shell activated charcoal production. International Journal for Service Learning in Engineering, 7: 93 –104.

5.       Chandra, T. C., Mirna, M. M., Sunarso, J., Sudaryanto, Y. and Ismadji, S. (2009). Activated carbon from durian shell: preparation and characterization. Journal of Taiwan Institute Chemical Engineering. 40: 457 – 462.

6.       Tay, T., Ucar, S. and Karagoz, S. (2009). Preparation and characterization of activated carbon from waste biomass. Journal of Hazardous Materials, 165: 481 – 485.

7.       Cresswell, G., (2011). Coir dust a proven alternative to peat. Cresswell Horticulrutal Services (Report): 1 – 13.

8.       Yusof, A. A. (2004). Thesis The development of microwave absorber from oil palm shell carbon.

9.       Yusof, A. A., Ali, W. K. W., Rahman, T. A. and Ani F. N. (2005). Microwave and reflection properties of palm shell carbon-polyester conductive composite absorber. Jurnal Teknologi, 42: 59 – 74.

10.    Zahid, L., Malek, M. F. B. A., Nornikman, H., Mohd Affendi, N. A., Ali, A., Hussin, N., Ahmad B. H. and Abdul Aziz, M. Z. A. (2013). Development of pyramidal microwave absorber using sugar cane bagasse (SCB). Progress in Electromagnetics Research, 137: 687 – 702.

11.    Menéndez, J. A., Arenillas, A., Fidalgo, B., Fernández, Y., Zubizarreta, L., Calvo, E. G. and Bermúdez, J. M. (2010). Microwave heating processes involving carbon materials. Fuel Processing Technology, 91: 1 – 8.

12.    Information from Biofuels Research Infrastructure for Sharing Knowledge (BRISK), Database for biomass and waste, Retrived from https://www.ecn.nl/phyllis2/

13.    Achaw, O-W. and Afrane, G. (2008). The evolution of pore structure of coconut shells during the preparation of cocnut shell-based activated carbons. Microporous and Mesoporous Materials, 112: 284 – 290.

14.    Mfanacho, S. M., Hemang, P. and Manocha, L. M. (2010). Enhancement of microporosity through physical activation. PRAJÑĀ - Journal of Pure and Applied Sciences, 18: 106 – 109.

15.    Saini, P., Arora, M. and Ailton, D.S.G. (2012). Microwave absorption and EMI shielding behaviour of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes. In Chapter 3. Crotia: InTech Publishing: pp 1 – 42.

16.    Li, S., Chen, S., Anwar, S., Lu, W., Lai, Y., Chen, H., Hou, B., Ren, B, F. and Gu, B. (2012). Applying Effective Medium Theory in Characterizing Dielectric Constant of Solids. Progress in Electromagnetics Research. 35: 145 –153.

17.    Micheli, D., Apollo, C., Pastore, R., Morles, R.B., Marchetti, M., Gradoni, G. edited by Reddy, B. (2011). Electromagnetic characterization of composite materials and microwave absorbing modelling in Chapter 16. InTech Publishing: pp 359 – 384.

18.    Thompson, M. (2008). CHNS Elemental Analysers (Analytical Methods Committee). Royal Chemical Society: pp 1 – 2.

19.    Meena, P. L., Saxena, R. and Sharma, N. (2014). A rapid analytical method using flow injection preconcentration of zinc on dithizone impregnated on amberlite XAD-2 and its determination in water samples by FAAS. International Journal of Agriculture and Food Science Technology, 5: 287 – 296.

20.    Koboski, K. R., Nelsen, E. F. and Hampton, J. R. (2013). Hydrogen evolution reaction measurements of dealloyed porous NiCu. Nanoscale Research Letters, 8: 528 – 535.

21.    Hoon, W. F., Jack, S. P., Malek, M. F. A. and Hasssan, N. (2012). Alternatives for pcb laminates: dielectric properties' measurements at microwave frequencies in Chapeter 5. InTech Publishing.

22.    Chakma, S., Vaishya, R. C. and Yadav, A. K. (2015). Modeling chemical compositions of municipal solid waste. Environmental Geotechnics (Article in Press): September 11, 2015

23.    Cazetta, A. L., Vargas, A. M. M., Nogami, E. M., Kunita, M. H., Guiherme, M. R., Martins, A. C., Silva, T. L., Moraes, J. C. G. and Almeid, V. C. (2011). NaOH activated carbon of high surface area produced from coconut shell: kinetics and equilibrium studies from the methylene blue adsorption. Chemical Engineering Journal, 174: 117 – 125.

24.    Demiral, H., Demiral, I., Karabacakoglu, B. and Tumsek. F. (2011). Production of activated carbon from olive bagasse by physical activation. Chemical Engineering Research and Design, 89: 206 – 213.

25.    Nasria, N. S., Jibrila, M., Zaini, M .A. A., Mohsin, R. Daduma, H. U. and Musa, A. M. (2014). Synthesis and characterization of green porous carbons with large surface area by two step chemical activation with KOH. Jurnal Teknologi. 67(4): 25 – 28.

26.    Bhatnagar, A., Hogland, W., Marques, M. and Sillanpaa, M. (2013). An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal, 219: 499 – 511.

27.    Iqbaldin, M. M., Khudzir, I., Azlan, M. M., Zaidi, A. G., Surani, B. and Zubri, Z. (2013). Properties of coconut shell activated carbon. Journal of Tropical Forest Science, 25: 497 – 503.

28.    Atwater, J. E. and Jr. R.R. Wheeler. (2004). Microwave permittivity and dielectric relaxation of a high surface area activated carbon. IEEE Electrical Insulation Magazine, 17(2): 66 – 66.

 




Previous                    Content                    Next