Malaysian Journal of Analytical Sciences Vol 20 No 3 (2016): 461 – 468

DOI: http://dx.doi.org/10.17576/mjas-2016-2003-01

 

 

 

OPTIMIZATION OF ACTIVATED CARBON PREPARATION FROM SPENT MUSHROOM FARMING WASTE (SMFW) VIA BOX–BEHNKEN DESIGN OF RESPONSE SURFACE METHODOLOGY

 

(Penyediaan Secara Optimum Arang Teraktif daripada Sisa Tanaman Cendawan Terpakai (SMFW) Melalui Reka Bentuk Box-Behnken dari Kaedah Gerak Balas Permukaan)

 

Nurul-Shuhada Md-Desa2, Zaidi Ab Ghani1, Suhaimi Abdul-Talib3, Chia-Chay Tay1*

 

1Faculty of Applied Sciences,

Universiti Teknologi MARA,02600 Arau, Perlis Malaysia

2Faculty of Applied Sciences

3Faculty of Civil Engineering

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: taychiay@perlis.uitm.edu.my

 

 

Received: 9 December 2014; Accepted: 22 March 2016

 

 

Abstract

This study focuses on activated carbon preparation from spent mushroom farming waste (SMFW) via chemical activation using Box-Behnken design (BBD) of Response Surface Methodology (RSM). Potassium hydroxide (KOH) functions as activating reagent and it play an important role in enhancing the activated carbon porosity. Three input parameters and two responses were evaluated via this software generated experimental design. The effects of three preparation parameters of impregnation ratio, activation time and activation temperature as well as two responses of carbon yield and iodine number were investigated. The optimum conditions for preparing activated carbon from SMFW was found at SMFW: KOH impregnation ratio of 0.25, activation time of 30 min and activation temperature of 400 oC which resulted in 28.23 % of carbon yield and 314.14 mg/g of iodine number with desirability of 0.994. The predicted results were well corresponded with experimental results. This study is important in economical large scale SMFW activated carbon preparation for application study of adsorption process for metal treatment in wastewater with minimum chemical and energy input.

 

Keywords: activated carbon, spent mushroom farming waste, Box-Behnken design, response surface methodology

 

Abstrak

Kajian ini memfokuskan penyediaan arang teraktif daripada sisa tanaman cendawan terpakai melalui reka bentuk box-behnken (BBD) dari kaedah gerak balas permukaan (RSM). Potasium hidroksida (KOH) berperanan sebagai agen pengaktifan dan penting untuk meningkatkan liang arang teraktif. Tiga parameter input dan dua respon telah dinilai oleh perisian ini yang dihasilkan oleh rekabentuk eksperimen. Kesan daripada penyediaan tiga parameter iaitu nisbah pemadatan, masa pengaktifan dan suhu pengaktifan serta dua respon iaitu hasil arang teraktif dan nilai iodin telah disiasat. Keadaan optimum dalam penyediaan arang teraktif telah didapati pada nisbah SMFW: KOH iaitu 0.25, tempoh pengaktifan selama 30 min dan suhu pengaktifan 400 °C, di mana ia menghasilkan jumlah maksimum arang teraktif sebanyak 28.23 % dan nilai iodin yang boleh diterima iaitu sebanyak 314.14 mg/g dengan ketepatan 0.994. Keputusan yang telah diramalkan adalah seiring  dengan keputusan eksperimen. Kajian ini adalah penting dalam penyediaan arang teraktif secara berskala besar dengan ekonomi daripada sisa tanaman cendawan terpakai untuk kajian proses penjerapan terhadap rawatan logam dalam air sisa dengan input bahan kimia dan tenaga yang minimum.

 

Kata kunci:  karbon teraktif, sisa tanaman cendawan terpakai, reka bentuk Box-Behnken, kaedah gerak balas permukaan

 

References

1.       Vargas, A. M. M., Garcia, C. A., Reis, E. M., Lenzi, E., Costa, W. F. and  Almeida, V. C. (2010). NaOH-activated carbon from flamboyant (Delonix regia) pods: Optimization of preparation conditions using central composite rotatable design. Chemical Engineering Journal, 162 (1): 43 – 50.

2.       Garba, Z. N. and Rahim, A. A. (2014). Process optimization of K2C2O4-activated carbon from Prosopis africana seed hulls using response surface methodology. Journal of Analytical and Applied Pyrolysis, 107: 306 – 312.

3.       Garba, Z. N., Abdul Rahim, A. and Hamza, S. A. (2014). Potential of Borassus aethiopum shells as precursor for activated carbon preparation by physico-chemical activation; optimization, equilibrium and kinetic studies. Journal of Environmental Chemical Engineering, 2(3): 1423 – 1433.

4.       Tan, I. A. W., Ahmad, A. L. and Hameed, B. H. (2008). Preparation of activated carbon from coconut husk: optimization study on removal of 2,4,6-trichlorophenol using response surface methodology. Journal of Hazardous Materials, 153(1-2): 709 –717.

5.       Foo, K. Y. and Hameed, B. H.  (2012). Mesoporous activated carbon from wood sawdust by K2CO3 activation using microwave heating. Bioresource Technology, 111:  425 – 432.

6.       Moodley, K., Singh, R., Musapatika, E. T., Onyango, M. S. and Ochieng, A. (2011). Removal of nickel from wastewater using an agricultural adsorbent, Water SA, 37(1): 41 – 46.

7.       Yahaya, E. M., Faizal, M., Mohamed, P., Abustan, I. and Azmier, M.  (2010). Effect of preparation conditions of activated carbon prepared from rice husk by ZnCl2 activation for removal of Cu (II) from aqueous solution. International Journal of Engineering Technology 10 (6): 1– 5.

8.       Chen, Y., Zhu, Y., Wang, Z., Li, Y., Wang, L., Ding, L. and Guo, Y. (2011). Application studies of activated carbon derived from rice husks produced by chemical-thermal process – a review. Advances in Colloid and Interface Science 163(1): 39 – 52.

9.       Kumagai, S., Sato, M. and Tashima, D. (2013). Electrical double-layer capacitance of micro- and mesoporous activated carbon prepared from rice husk and beet sugar. Electrochimica Acta, 114: 617 –626.

10.    Ding, L., Zou, B., Gao, W., Liu, Q., Wang, Z., Guo, Y. and Liu, Y.  (2014). Adsorption of Rhodamine-B from aqueous solution using treated rice husk-based activated carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 446: 1 – 7.

11.    Yao, X., Liu, J., Gong, G., Jiang, Y. and Xie, Q. (2013). Preparation and modification of activated carbon for benzene adsorption by steam activation in the presence of KOH. International Journal of Mining Science and Technology, 23(3): 395 – 401.

12.    ElShafei, G. M. S., ElSherbiny, I. M., Darwish, A. S., and Philip, C. A. (2014). Silkworms’ feces-based activated carbons as cheap adsorbents for removal of cadmium and methylene blue from aqueous solutions. Chemical Engineering Research and Design, 92(3): 461 – 470.

13.    Pezoti Junior, O., Cazetta, A. L., Gomes, R. C., Barizão, É. O., Souza, I. P. A. F., Martins, A. C. and Almeida, V. C. (2014). Synthesis of ZnCl2-activated carbon from macadamia nut endocarp (Macadamia integrifolia) by microwave-assisted pyrolysis: Optimization using RSM and methylene blue adsorption. Journal of Analytical and Applied Pyrolysis, 105: 166 –176.

14.    Gao, Y., Yue, Q., Gao, B., Sun, Y., Wang, W., Li, Q. and Wang, Y. (2013). Preparation of high surface area-activated carbon from lignin of papermaking black liquor by KOH activation for Ni(II) adsorption. Chemical Engineering Journal, 217: 345 – 353.

15.    Yang, H., Yan, R., Chen, H., Lee, D. H. and Zheng, C. (2010). Characteristic of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12): 1781 – 1788.

16.    Zhang, M., Resende, F. L. P., Moutsoglou, A. and Raynie, D. E. (2012). Pyrolysis of lignin extracted from prairie cordgrass, aspen and kraft lignin by Py-GC/MS and TGA/FTIR. Journal of Analytical and Applied Pyrolysis, 98: 65 – 71.

17.    Dominguez, J. C., Oliet, M., Alonso, M. V., Gilarranz, M. A. and Rodriguez, F. (2008). Thermal stability and pyrolysis kinetics of organosolv lignins obtained from Eucalyptus globulus. Industrial Crops and Products, 27(2): 150 – 156.

18.    Sharma, R. K., Wooten, J. B., Baliga, V. L., Lin, X.,Chan, W. G. and Hajaligol, M.R. (2004). Characterization of chars from pyrolysis of lignin. Fuels, 83(11): 1469 – 1482.

19.    Muthanna, J. A. and Samar K. T. (2013). Microporous activated carbon from Siris seed pods by microwave-induced KOH activation for metronidazole adsorption. Journal of Analytical and Applied Pyrolysis, 99: 101 – 109.

20.    Şentorun-Shalaby, Ç., Uçak-Astarlıogˇlu, M. G., Artok, L. and Sarıcı, Ç. (2006). Preparation and characterization of activated carbons by one-step steam pyrolysis/activation from apricot stones. Microporous and Mesoporous Materials, 88(1): 126 – 134.

21.    Abechi, S. E., Gimba, C. E., Uzairu, A. and Dallatu, Y. A. (2013). Preparation and Characterization of Activated Carbon from Palm Kernel Shell by Chemical Activation. Research Journal of Chemical Science, 3(7): 65 – 61.

22.    Tham, Y. J., Shamala, D. A., Nur Hidayah, A. L., Ahmad, M. A. and Puziah, A. L. (2010). Effect of activation temperature and heating duration on physical characteristics of activated carbon prepared from agricultural waste. Environment Asia, 3: 143 –148.




Previous                    Content                    Next