Malaysian Journal of Analytical Sciences Vol 20 No 3 (2016): 531 - 538

DOI: http://dx.doi.org/10.17576/mjas-2016-2003-10

 

 

 

INFLUENCE OF CHROMIUM ON THE REDUCTION BEHAVIOR OF FERRIC OXIDE BY USING CARBON MONOXIDE: TEMPERATURE PROGRAMMED REDUCTION AND KINETIC STUDIES

 

(Pengaruh Kromium Terhadap Kelakuan Penurunan Ferik Oksida dengan Menggunakan Karbon Monoksida: Kajian Penurunan Suhu Berprogram dan Kinetik)

 

Tengku Shafazila Tengku Saharuddin1*, Alinda Samsuri1,2, Fairous Salleh1, Mohammad Bin Kassim1,

Rizafizah Othaman1, Mohamed Wahab Mohamed Hisham1, Mohd Ambar Yarmo1

 

1School of Chemical Science and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Centre for Defence Foundation Studies,

Universiti Pertahanan Nasional Malaysia, Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia

 

*Corresponding author: tengkushafazila@gmail.com

 

 

Received: 24 February 2015; Accepted: 27 October 2015

 

 

Abstract

This study was undertaken to investigate the effect of chromium on the reduction behaviour of ferric oxide with carbon monoxide (10 %, v/v) in nitrogen as a reductant. Ferric oxide was impregnated with 3 % chromium to produce chromium-doped ferric oxide (Cr-Fe2O3). The reduction behaviour and the kinetic studies of Cr-Fe2O3 and Fe2O3 have been studied by temperature programmed reduction (TPR) and the phases formed of partially and completely reduced samples were characterized by X-ray diffraction spectroscopy (XRD). Meanwhile, the activation energy values were calculated from the Arrhenius equation using Wimmer’s method. TPR results indicate that the reduction of Cr-Fe2O3 proceeded in two reduction steps (Fe2O3 → Fe3O4 → Fe), while, Fe2O3 proceeded in three reduction steps (Fe2O3 → Fe3O4  FeO → Fe) with doped ferric oxide showed a large shifted towards lower temperature. The complete reduction of ferric oxide to metallic Fe occur at 700 °C compared to the undoped ferric oxide (900 °C). The XRD pattern showed that the diffraction peaks of Cr-Fe2O3 are more intense compare to Fe2O3, indicating that the improvement on the crystallinity of the characteristic peaks of Fe2O3 with no additional peak observed meaning that the chromium particles loaded on the ferric oxide were well dispersed. Furthermore, additional of 3 % chromium  on ferric oxide gives larger surface area and decrease in the activation energy up to 12.39 % regarding to transition phases of Fe2O3 → Fe3O4 during the reduction process may also led to the increase in the rates of ferric oxide reduction.

 

Keywords: temperature programmed reduction, kinetic, reduction, ferric oxide, chromium, carbon monoxide

 

Abstrak

Kajian ini dijalankan untuk melihat pengaruh kromium pada kelakuan penurunan ferik oksida di mana karbon monoksida (10%, v/v) di dalam nitrogen digunakan sebagai agen penurunan. Serbuk ferik oksida yang didopkan pada kromium (Cr-Fe2O3) disintesis menggunakan kaedah impregnat. Kelakuan penurunan dan kinetik oleh Cr-Fe2O3 and Fe2O3 dikaji menggunakan teknik suhu penurunan berprogram (TPR) dan fasa - fasa yang terbentuk bagi separa dan penurunan penuh dicirikan menggunakan teknik pembelauan sinar X (XRD) sementara nilai - nilai tenaga pengaktifan dikira daripada persamaan Arrhenius dan kaedah Wimmer. Profil TPR menunjukkan bahawa penurunan ferik oksida yang didopkan kromium melalui dua langkah tindak balas penurunan (Fe2O3 → Fe3O4 → Fe) manakala ferik oksida yang tidak didopkan melalui tiga langkah tindak balas penurunan (Fe2O3 → Fe3O4 → FeO → Fe). Suhu proses penurunan tamat beranjak kepada suhu yang lebih rendah iaitu 700 °C dan proses penurunan tamat pada suhu (900 °C). Difraktogram XRD terhadap Cr-Fe2O3 menunjukkan peningkatan pada kehabluran puncak Fe2O3 berbanding ferik oksida yang tidak didopkan dengan tiada puncak tambahan diperhatikan dimana ia menjelaskan bahawa zarah kromium yang dimuatkan pada ferik oksida telah tersebar dengan baik. Di samping itu, tambahan sebanyak 3 % kromium pada ferik oksida memberikan kawasan permukaan yang lebih besar dan pengurangan tenaga pengaktifan sehingga 12.39 % bagi peralihan fasa Fe2O3 → Fe3O4 serta juga membawa kepada peningkatan kepada kadar proses penurunan ferik oksida tersebut.

 

Kata kunci: penurunan suhu berprogram, kinetik, penurunan, ferik oksida, kromium, karbon monoksida

 

References

1.       Pineau, A., Kanari, N. and Gaballah, I. (2007). Kinetics of reduction of iron oxides by H2, Thermochimica Acta, 456(2): 75 – 88.

2.       Li, K., Haneda, M., Gu, Z., Wang, H. and Ozawa, M. (2013). Modification of CeO2 on the redox property of Fe2O3. Materials Letters, 93: 129 – 132.

3.       Monazam, E. R., Breault, R. W. and Siriwardane, R. (2014). Reduction of hematite (Fe2O3) to wüstite (FeO) by carbon monoxide (CO) for chemical looping combustion,Chemical Engineering Journal, 242: 204 – 210.

4.       Pickles, C. A. (2008). Thermodynamic analysis of the separation of zinc and lead from electric arc furnace dust by selective reduction with metallic iron. Separation and Purification Technology, 59: 115 – 128.

5.       Longbottom, R. and Kolbeinsen, L. (2008). Iron ore reduction with CO and H2 gas mixtures – thermodynamic and kinetic modelling. Proceedings of 4th Ulcos Seminar, October:1 – 13.

6.       Colombo, U., Gazzarrini, F. and Lanzavecchia, G. (1967). Mechanisms of iron oxides reduction at temperatures below 400 °C. Materials Science Engineering, 2(3):125 – 135.

7.       Jozwiak, W. K., Kaczmarek, E., Maniecki, T. P., Ignaczak, W. and Maniukiewicz, W. (2007). Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres. Applied Catalysis A: General, 326(1): 17 – 27.

8.       Leith, I. R. and Howden, M. G. (1988). Temperature-programmed reduction of mixed iron-manganese oxide catalysts in hydrogen and carbon monoxide. Applied Catalysis, 37:75 – 92.

9.       Khan A. and Smirniotis, P. G. (2008). Relationship between temperature-programmed reduction profile and activity of modified ferrite-based catalysts for WGS reaction. Journal of Molecular Catalysis A: Chemical 280: 43 – 51.

10.    Mondal, K., Lorethova, H., Hippo, E., Wiltowski, T. and Lalvani, S. B. (2004). Reduction of iron oxide in carbon monoxide atmosphere - reaction controlled kinetics. Fuel Processing Technology, 86(1): 33 –47.

11.    Hu, C., Gao, Z. and Yang, X. (2007). Facile synthesis of single crystalline α-Fe2O3 ellipsoidal nanoparticles and its catalytic performance for removal of carbon monoxide, Materials Chemistry and Physics, 104 (2–3): 429 – 433.

12.    Ryu, J. C., Lee, D. H., Kang, K. S., Park, C. S., Kim, J. W. and Kim, Y. H. (2008). Effect of additives on redox behavior of iron oxide for chemical hydrogen storage, Journal of Industrial and Engineering Chemistry, 14(2): 252 – 260.

13.    Munteanu, G., Illieve, L. and Andreeva, D. (1997). Kinetic parameters obtained from TPR data for ol-Fe2O3 and Au/o~-Fe2O3 systems, Thermochimica Acta, 291:171 – 177.

 

 




Previous                    Content                    Next