Malaysian Journal of Analytical Sciences Vol 20 No 3 (2016): 539 - 545

DOI: http://dx.doi.org/10.17576/mjas-2016-2003-11

 

 

 

SYNTHESIS AND CHARACTERIZATION OF MESOPOROUS SILICA

 MCM-41 AND SBA-15 FROM POWER PLANT BOTTOM ASH

 

(Sintesis dan Pencirian Silika Mesoporos MCM-41 dan SBA-15 daripada Debu Bawah Loji Janakuasa)

 

Nurul Barakah Ab Rahman*, Hamizah Md. Rasid, Hashazirah Mohammad Hassan, Mohammad Noor Jalil

 

School of Chemistry and Environment,

Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: barakahrahman@gmail.com

 

 

Received: 24 February 2015; Accepted: 27 October 2015

 

 

Abstract

Silica was extracted from power plant bottom ash by alkali fusion method and used to synthesize MCM-41 and SBA-15. As comparison, MCM-41 and SBA-15 were synthesized by using tetraethylorthosilicate (TEOS) as pure silica source. All synthesized MCM-41 and SBA-15 were characterized using X-ray Diffraction (XRD) and nitrogen adsorption to determine the formation of hexagonal pores, Field Emission Scanning Electron Micrograph (FESEM) was used to observe their morphology while Fourier Transform Infrared Spectroscopy (FTIR) was used to obtain the functional group and removal of surfactant after calcinations. XRD results confirmed bottom ash MCM-41 (BA MCM-41), pure SBA-15 (PSBA-15) and bottom ash SBA-15 (BA SBA-15) have well-ordered mesostructures. N2 adsorption of pure MCM-41 (PMCM-41), PSBA-15 and BA SBA-15 indicated type IV isotherm while BA MCM-41 exhibit type III isotherm. According to FESEM analyses, the particle morphology of bottom ash mesoporous silica was different from those prepared using pure chemical. Morphology of PMCM-41 and PSBA-15 showed rod like particle while BA MCM-41 and BA SBA-15 exhibited agglomerated particle.  PMCM-41, PSBA-15 and BA SBA-15 shows ordered hexagonal, high surface area and narrow pore distribution.

 

Keywords: mesoporous silica, MCM-41, SBA-15

 

Abstrak

Silika telah diekstrak daripada abu bawah loji janakuasa melalui kaedah gabungan alkali dan digunakan untuk sintesis MCM-41 dan SBA-15. Sebagai perbandingan, MCM-41 dan SBA-15 telah disintesis dengan menggunakan tetraetilortosilika (TEOS) sebagai sumber silika tulen. Semua MCM-41 dan SBA-15 yang telah disintesis dicirikan menggunakan kaedah pembelauan Sinar X (XRD) dan penjerapan nitrogen untuk menentukan pembentukan liang heksagon, mikroskopi elektron pengimbasan pancaran medan (FESEM) digunakan untuk memerhati morfologi manakala Spektroskopi Inframerah Tranformasi Fourier (FTIR) digunakan untuk mengenalpasti kumpulan berfungsi dan penyingkiran surfaktan selepas pengkalsinan. Keputusan XRD membuktikan debu MCM-41 (BA MCM-41), SBA-15 tulen (PSBA-15) dan debu SBA-15 (BA SBA-15) mempunyai mesostruktur yang teratur. Penjerapan N2 oleh MCM-41 (PMCM-41), PSBA-15 dan BA SBA-15 menunjukkan isoterma jenis IV manakala isoterma jenis III bagi BA MCM-41. Berdasarkan analisis FESEM, morfologi zarah silika mesoporos daripada debu bawah loji janakuasa adalah berlainan berbanding yang disediakan menggunakan bahan kimia tulen. Morfologi PMCM-41 dan PSBA-15 menunjukkan zarah jenis rod manakala BA MCM-41 dan BA SBA-15 wujud sebagai zarah bercampur. PMCM-41, PSBA-15 dan BA SBA-15 mempunyai struktur heksagon yang seragam, luas permukaan yang tinggi dan taburan liang yang kecil.

 

Kata kunci: silika mesoporos, MCM-41, SBA-15

 

References

1.       Zhao, X. S., Lu, G. Q. (Max) and Millar, G.J. (1996). Advances in mesoporous molecular sieve MCM-41. Industrial and Engineering Chemical Research 35 (7): 2075 - 2090.

2.       Liou, T.-H. (2011). A green route to preparation of MCM-41 silicas with well ordered mesostructure controlled in acidic and alkaline environments. Chemical Engineering Journal, 17: 1458 - 1468

3.       Huang, L., Huang, Q., Xiao, H., and Eić, M. (2007). Effect of cationic template on the adsorption of aromatic compounds in MCM-41. Microporous and Mesoporous Materials, 98(1-3): 330 - 338.

4.       Vartuli, J. C., Roth, W. J. and Degnan, T. F. (2008). Mesoporous materials (MS41S): From discovery to application, in Dekkar Encyclopedia of Nanoscience and Nanotechnology: 1797 - 1811.

5.       Tatsumi, T., Koyano, K. A., Tanaka, Y. and Nakata, S. (1999). Mechanical Stability of Mesoporous Materials, MCM-48 and MCM-41. Journal of Porous Materials, 6: 13 - 17.

6.       Andersson, J, and J Rosenholm, (2008). Mesoporous silica : an alternative diffusion controlled drug delivery system. Topics in Tissue Engineering: 1 - 19.

7.       Park, J. E., Youn, H. K., Yang, S. T, and Ahn, W. S. (2012). CO2 capture and MWCNTs synthesis using mesoporous silica and zeolite 13X collectively prepared from bottom ash. Catalysis Today, 190: 15 - 22.

8.       Majchrzak-Kuceba, I. and Nowak, W. (2011). Characterization of mesoporous materials derived from polish fly ashes. International Journal of Mineral Processing. 101: 100 - 111.

9.       Hui, K. S., and Chao, Y. H. (2006). Synthesis of MCM-41 from coal fly ash by a green approach: Influence of synthesis pH. Journal of Hazardous Materials, 137: 1135 - 1148.

10.    Halina, M., Ramesh, S., Yarmo, M. A. and Kamarudin, R.A. ( 2007). Non-hydrothermal synthesis of mesoporous materials using sodium silicate from coal fly ash. Materials Chemistry and Physics, 101: 344 – 351.

11.    Chang, H. L., Chun, C. M., Aksay, I. A. and Shih, W. H. (1999). Conversion of fly ash into mesoporous aluminosilicate. Industrial & Engineering Chemistry Research 38: 973 - 977.

12.    Chandrasekar, G., You, K. S., Ahn, J. W. and Ahn, W.S. (2008). Synthesis of hexagonal and cubic mesoporous silica using power plant bottom ash. Microporous and Mesoporous Materials. 111: 455 -462.

13.    Jalil, M. N., (2011). The preparation and characterization of mesoporous films for electrochemical applications. Ph.D. Thesis. University of Manchester, United Kingdom: pp 249.

14.    Ng, E-P, Goh, J-Y, Ling, T. C., and Mukti, R. R. (2013) .Eco-friendly synthesis for MCM-41 nanoporous materials using the non-reacted reagents in mother liquor. Nanoscale Research Letters, 8(1): 120.

15.    Du, G., Lim, S., Pinault, M., Wang, C., Fang, F., Pfefferle, L. and Haller, G., (2008). Synthesis, characterization, and catalytic performance of highly dispersed vanadium grafted SBA-15 catalyst. Journal of Catalysis, 253(1): 74 - 90.

16.    Ahmad, A., Rasid, H. M. and Kassim, K. (2013). Physicochemical properties of CuO2 (acac)2 supported on functionalized MCM41 containing thiourea ligand. International Journal of Chemical Engineering and Applications, 4(1): 6 - 10.

17.    Kruk, M. and Jaroniec, (2000). Characterization of the porous structure of SBA-15. Chemistry Material, 12: 1961 - 1968.

18.    Fonseca, L. C., Faez, R., Camilo, F. F. and Bizeto, M. A. (2012). Evaluation of the doping process of polyaniline produced inside the mesopores of a sulfonic acid grafted MCM-41. Microporous and Mesoporous Materials 159: 24 - 29.

 




Previous                    Content                    Next