Malaysian Journal of Analytical Sciences Vol 20 No 3 (2016): 585 - 593

DOI: http://dx.doi.org/10.17576/mjas-2016-2003-18

 

 

 

EFFECTS OF DIFFERENT GRINDING METHODS ON MORPHOLOGICAL, TEXTURAL PROPERTIES AND PASTING PROFILES OF MR220 RICE FLOUR

 

(Kesan Kaedah Pengisaran yang Berbeza terhadap Morfologi, Sifat Tekstur dan Profil Pempesan Tepung Beras MR220)

 

Noorlaila Ahmad1*, Asmeda Rajab1, Norziah Mohd Hani2

 

1Department of Food Technology, Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Food Technology Department, School of Industrial Technology,

Universiti Sains Malaysia, 40450 Minden, Penang, Malaysia

 

*Corresponding author: dnoorlaila@salam.uitm.edu.my

 

 

Received: 24 February 2015; Accepted: 27 October 2015

 

 

Abstract

Three different grinding techniques (dry, semi-wet, and wet) were employed in rice flour production. Investigation on the effects of the grinding techniques on starch damage percentage, particle size distribution, pasting profiles, morphological and textural properties of rice flours produced were evaluated. Wet grinding resulted in significantly (p< 0.05) has lower percentage of damaged starch (3.24 %) than other grinding methods. Morphological studies (microscopy and particle size analysis) have reflected significant differences among rice flours granule shapes. The granules displaying different shapes of polygonal, round and angular forms, with some as an individual granule while others tend to attached together. Wet grinding technique also yielded flour that exhibit significantly (p< 0.05) with higher gel hardness (16.62 g). Pasting profiles showed that pasting temperature for rice flour produce using these three grinding methods varied between 80.15 – 80.42 °C. Results revealed that the three grinding techniques clearly affected the physicochemical properties of rice flour. The results from this study play an important role in the selection criteria of rice flour with desirable pasting and textural properties for manufacturing rice-based product.

 

Keywords: Grinding techniques, particle size, pasting profiles, rice flour, starch damage

 

Abstrak

Tiga jenis teknik pengisaran (kering, separa basah, dan basah) telah digunakan dalam penghasilan tepung beras. Kajian ke atas kesan teknik pengisaran pada peratusan kerosakan kanji, taburan saiz partikel, profil pempesan, sifat morfologi dan tekstur tepung beras yang dihasilkan telah dianalisa. Pengisaran basah menyebabkan peratusan kanji rosak (p< 0.05) lebih rendah secara signifikan (3.24 %) berbanding kaedah – kaedah pengisaran lain. Kajian morfologi (mikroskopi dan analisis saiz zarah) telah menunjukkan perbezaan yang signifikan antara tepung beras dari segi saiz dan bentuk granul yang terhasil. Granul memaparkan bentuk berlainan seperti poligon, bulat dan bentuk bersudut, samada wujud sebagai granul sendirian ataupun berkluster. Teknik pengisaran basah juga menghasilkan perbezaan yang signifikan (p< 0.05) berbanding teknik pengisaran lain dari segi kekerasan gel yang lebih tinggi (16.62 g). Profil pempesan menunjukkan suhu pempesan untuk tepung beras yang dihasilkan menggunakan ketiga – tiga kaedah pengisaran berada dalam julat antara 80.15 – 80.42 °C. Hasil kajian dengan jelas menunjukkan bahawa tiga teknik pengisaran memberi kesan kepada ciri – ciri fizikokimia tepung beras. Hasil kajian ini sangat penting dalam menentukan kriteria tepung beras berdasarkan sifat dan sifat tekstur yang dikehendaki untuk pembuatan produk berasaskan beras.

 

Kata kunci: Teknik pengisaran, saiz partikel, profil pempesan, tepung beras, kerosakan kanji

 

References

1.       Wahab, A. G. and Rittgers, C. (2014). Global Agricultural Information Network Report MY4001 – Grain & Feed Annual, Malaysia. (No.: MY4001), pp 1-5.

2.       Hossain, M. S., Singh, A. K. and Fasih-uz-Zaman. (2009). Cooking and eating characteristics of some newly identified inter sub-specific (Indica/Japonica) Rice Hybrids. Science Asia, 35: 320 – 325.

3.       Bhattacharya, K. R. (2009). Physicochemical basis of eating quality of rice. Cereal Foods World, 54 (1): 18 - 28.

4.       Song, S. –H., Lee, M. –G., Lee, H. –J. and Yoon, W. –B. (2014). Analysis of grinding kinetics to control the effect of rice flour particle size on the yield of alcohol and glucose during fermentation. International Journal of Food Science & Technology: 1 – 8.

5.       Djantou, E. B., Mbofung, C. M., Scher, J. and Desobry, S. (2007). A modelling approach to determine the effect of pre-treatment on the grinding ability of dried mangoes for powder production (Mangifera indica var kent). Journal of Food Engineering, 80: 668 – 677.

6.       Pauly, A., Pareyt, B., Fierens, E. and Delcour, J. A. (2013). Wheat (Triticum aestivum L. and T. turgidum L. ssp. durum) kernel hardness: ii. implications for end-product quality and role of puroindolines therein. Comprehensive Reviews in Food Science & Food Safety, 12 (4): 427 – 438.

7.       Winger, M., Khouryieh, H., Aramouni, F. and Herald, T. (2014). Sorghum flour characterization and evaluation in gluten-free flour tortilla. Journal of Food Quality, 1 – 12.

8.       Kong, X., Zhu, P., Sui, Z. and Bao, J. (2015). Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinisation temperature combinations. Food Chemistry, 172: 433 – 440.

9.       American Association of Cereal Chemists. (2000). AACC Method 76-31. In Approved Methods of AACC, 10th Ed., St. Paul, MN.

10.    American Association of Cereal Chemists. (2000). AACC Method 61-02. In Approved Methods of AACC, 10th Ed., St. Paul, MN.

11.    Hasjim, J., Li, E. and Dhital, S. (2013). Milling of rice grains: effects of starch/flour structures on gelatinization and pasting properties. Carbohydrate Polymer, 92: 682 – 690.

12.    Statistical Analysis System. (2002). SAS: User’s Guide Statistics, (Version 9.13). SAS Institute, Inc., Cary, NC.

13.    Hossen, M. S., Sotome, I., Takenaka, M., Isobe, S., Nakajima, M. and Okadome, H. (2011). Effect of particle size of different crop starches and their flours on pasting properties. Japan Journal of Food Engineering, 12 (1): 29 – 35.

14.    Ngamnikom, P. and Songsermpong, S. (2011). The effects of freeze, dry, and wet grinding processes on rice flour properties and their energy consumption. Journal of Food Engineering, 104: 632 – 638.

15.    Cai, L., Choi, I., Hyun, J.–N. and Jeong, B.–K. (2014). Influence of bran particle size on bread baking quality of whole grain wheat flour and starch retrogradation. Cereal Chemistry, 91 (1): 65 – 71.

16.    Patwa, A., Malcolm, B., Wilson, J. and Ambrose, R. P. K. (2014). Particle size analysis of two distinct classes of wheat flour by sieving. American Society of Agricultural & Biological Engineers, 57 (1): 151 – 159.

17.    Nishita, K. D. and Bean, M. M. (1982). Grinding methods: their impact on rice flour properties. Cereal Chemistry, 59 (1): 46 – 49.

18.    Hossen, M. S., Sotome, I., Takenaka, M., Isobe, S., Nakajima, M. and Okadome, H. (2011). Starch damage and pasting properties of rice flours produced by dry jet grinding. Cereal Chemistry, 88 (1): 6 – 11.

19.    Noomhorn, A., Kongseree, N. and Apintapong, N. (1997). Effect of aging on the quality of glutinous rice crackers. Cereal Chemistry, 74: 12 – 15.

20.    Bryant, R. J., Kadan, R. S., Champagne, E. T., Vinyard, B. T. and Boykin, D. (2001). Functional and digestive characteristics of extruded rice flour. Cereal Chemistry, 78: 131 – 137.

21.    Park, J. H., Kim, D. C., Lee, S. E., Kim, O. W., Kim, H., Lim, S. T. and Kim, S. S. (2014). Effects of rice flour size fractions on gluten free rice bread. Food Science Biotechnology, 23 (6): 1875 – 1883.

22.    Song, J. Y. and Shin, M. S. (2007). Effects of soaking and particle sizes on the properties of rice flour and gluten-free rice brad. Food Science Biotechnology, 16: 759 – 764.

23.    Santhi, K. and Poongodi, V. T. (2014). Physical and functional characteristics of milling fractions of indian kavun pigmented brown rice (oryza sativa l.). International Journal of Agricultural & Food Science, 4 (2): 78 – 83.

24.    Zhongkai, Z., Kevin, R., Stuart, H. and Chris, B. (2002). Composition and functional properties of rice. International Journal Food Science Technology, 37: 849 – 868.

25.    Wang, L., Xie, B., Shi, J., Xue, S., Deng, Y., Wei, Y. and Tian, B. (2010). Physicochemical properties and structure of starches from chinese rice cultivars. Food Hydrocolloids, 24: 208 – 216.

26.    Mir, S. A. and Bosco, S. J. D. (2014). Cultivar difference in physicochemical properties of starches and flours from temperate rice of Indian Himalayas. Food Chemistry, 157: 448 – 456.

27.    Miles, M. J., Morris, V. J., Orford, P. D. and Ring, S. G. (1985). The roles of amylose and amylopectin in the gelation and retrogradation of starch. Carbohydrate Research, 135: 271 – 281.

28.    Chang, S. M. and Liu, L. C. (1991). Retrogradation of rice starches studied by differential scanning calorimetry and influence of sugars, NaCl and lipids. Journal of Food Science, 56: 564 – 566.

29.    Onabanjo, O. O. and Ighere Dickson, A. (2014). Nutritional, functional and sensory properties of biscuit produced from wheat-sweet potato composite. Journal of Food Technology Research, 1 (3): 111 – 121.

30.    Adebowale, A. A., Sanni, L. O. and Onitilo, M. O. (2008). Chemical composition and pasting properties of tapioca grit from different cassava varieties and roasting method. African Journal of Food Science, 2: 77 – 82.

31.    Adegunwa, M. O., Ganiyu, A. A., Bakare, H. A. and Adebowale, A. A. (2014). Quality evaluation of composite millet-wheat chinchin. Agriculture & Biology Journal of North America, 5 (1): 33 – 39.

32.    Regena, J. K. and Chen, Z. (2009). Physic-chemical properties of peanut meal flour as affected by processing methods. Journal of Biochemistry, 34: 229 – 243.

33.    Ikegwu, O. J., Okechukwu, P. E. and Ekumankana, E. O. (2010). Physic-chemical and pasting characteristics of flour and starch from achi (brachystegiaeunycoma) seed. Journal of Food Technology, 8 (2): 58 – 66.

34.    Obadina, A. O., Babatunde, B. O. and Olotu, I. (2014). Changes in nutritional composition, functional, and sensory properties of yam flour as a result of presoaking. Food Science & Nutrition, 1 – 6.

35.    Adebowale, A. A., Adegoke, M. T., Sanni, S. A., Adegunwa, M. O. and Fetuga, G. O. (2012). Functional properties and biscuit making potentials of sorghum-wheat flour composite. American Journal of Food Technology, 7: 372 – 379.

36.    Liang, X. and King, J. M. (2003). Pasting and crystalline property differences of commercial and isolated rice starch with added amino acids. Journal of Food Science, 68: 832 – 838.

37.    Newport Scientific. (1998). Interpretation. In Applications Manual for the Rapid Visco Analyzer, Australia, Newport Scientific Pty. Ltd., pp 13 – 16.

38.    Sharma, R., Oberoi, D. P. S., Sogi, D. S. and Gill, B. S. (2009). Pasting and crystalline property differences of commercial and isolated rice starch with added amino acids. Journal of Food Processing & Preservation, 33: 401 – 414.

39.    Asante, M. D., Offei, S. K., Gracen, V. Adu-Dapaah, H., Danquah, E. Y., Bryant, R. and McClung, A. (2013). Starch physicochemical properties of rice accessions and their association with molecular markers. Starch / Starke, 65: 1022 – 1028.

40.    Danbaba, N., Ukwungwu, M. N., Maji, A. T., Ndindeng, S. A., Jiya, A. G., Danfulani, S. and On, E. N. (2014). End-use quality of upland NERICA rice (Oryza sativa L) as affected by the addition of sweet cassava (low cyanide, Manihotesculenta) flour. International Journal of Agriculture & Forestry, 4 (3): 237 – 245.

41.    Chanapamokkhot, H. and Thongngam, M. (2007). The chemical and physicoc-chemical properties of sorghum starch and flour. Journal of Natural Science, 41: 343 – 349.

42.    Martinez, M. M., Calvino, A., Rosell, C. M. and Gomez, M. (2014). Effect of different extrusion treatments and particle size distribution on the physicochemical properties of rice flour. Food Bioprocess Technology, 7: 2657 – 2665.

43.    Kaur, S., Singh, N., Sodhi, N. S. and Rana, J. C. (2009). Diversity in properties of seed and flour of kidney bean germplasm. Food Chemistry, 117: 282 – 289.

44.    Chung, H., Liu, Q., Huang, R., Yin, Y. and Li, A. (2010). Physicochemical properties and in vitro starch digestibility of cooked rice from commercially available cultivars in Canada. Cereal Chemistry, 87 (4): 297 – 304.

45.    Offia-Olua, B. I. (2014). Chemical, functional and pasting properties of wheat (Triticumspp)-walnut (Juglansregia) flour. Food & Nutrition Sciences, 5: 1591 – 1604.

46.    Liu, L., Herald, T. J., Wang, D., Wilson, J. D., Bean, S. R. and Aramouni, F. M. (2012). Characterization of sorghum grain and evaluation of sorghum flour in a Chinese egg noodle system. Journal of Cereal Science, 55: 31 – 36.

47.    Ashida, K. (2014). Properties of floury rice mutant and its utilization for rice flour. Japan Agricultural Research Quarterly, 48 (1): 51 – 56.

48.    Barrera, G. N., Bustos, M. C., Iturriaga, L., Flores, S. K., Leon, A. E. and Ribotta, P. D. (2013). Effect of damaged starch on the rheological properties of wheat starch suspensions. Journal of Food Engineering, 116: 233 – 239.

 




Previous                    Content                    Next