Malaysian Journal of Analytical Sciences Vol 20 No 3 (2016): 594 - 600

DOI: http://dx.doi.org/10.17576/mjas-2016-2003-19

 

 

 

BITTERNESS AND PHYSICHOCHEMICAL PROPERTIES OF ANGELWING CLAM (Pholas orientalis) HYDROLYSATE

 

(Kepahitan dan Ciri – Ciri Fizikokimia Hidrolisat Mentarang (Pholas orientalis))

 

Normah Ismail* and Nurul Fasihah Razak

 

Department of Food Technology, Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: norismel@salam.uitm.edu.my

 

 

Received: 24 February 2015; Accepted: 27 October 2015

 

 

Abstract

Protein hydrolysates from angelwing clam were obtained by enzymatic hydrolysis using bromelain. The bitterness of hydrolysates was evaluated based on the degree hydrolysis (DH), sensory analysis, molecular weight distribution and functional group. By using 3 % of enzyme substrate ratio bromelain resulted in high DH value at 12.57 % when angelwing clam was hydrolysed for 2 hours. Sensory analysis showed that angelwing hydrolysate was bitter. Angelwing hydrolysate had molecular weight below 50 kDa. The lower molecular weight indicated that the protein has been degraded into smaller peptide chains which contribute to bitter taste. Moreover, the high peak of amine group in angelwing hydrolysate (3385.6 cm-1) suggested that bitterness exists.  Angelwing hydrolysate had higher protein content, lower fat content and had good water holding capacity than the flesh. This result suggested that angelwing hydrolysate could be useful as food ingredient even though bitter taste developed after the hydrolysis. Thus, debittering should be considered in order to pave the way for full utilization of angelwing clam hydrolysate as a food ingredient.

 

Keywords: angelwing clam, sensory, hydrolysate, bromelain, bitterness, physicochemical properties

 

Abstrak

Hidrolisat protein daripada kerang mentarang diperolehi daripada hidrolisis proses menggunakan enzim bromelain. Kepahitan hidrolisat dinilai berdasarkan tahap hidrolisis (DH), analisis deria, pengedaran berat molekul dan kumpulan berfungsi. Dengan menggunakan 3 % daripada nisbah substrat enzim bromelain menyebabkan nilai DH tinggi pada 12.57 % apabila kerang mentarang telah dihidrolisiskan selama 2 jam. Analisis deria menunjukkan kerang mentarang hidrolisat adalah pahit. Hidrolisat kerang mentarang mempunyai berat molekul di bawah 50 kDa. Berat molekul yang rendah menunjukkan bahawa protein yang telah dipecahkan kepada rantaian peptida yang lebih kecil menyumbang kepada rasa pahit. Selain itu, kumpulan amina yang mempunyai puncak yang tinggi dalam mentarang hidrolisat (3385.6 cm-1) menunjukkan bahawa kepahitan wujud.  Hidrolisat kerang mentarang mempunyai kandungan protein yang lebih tinggi, kandungan lemak yang lebih rendah dan mempunyai keupayaan pegangan air yang lebih baik daripada daging.  Hasil keputusan ini menunjukkan bahawa kerang mentarang hidrolisat boleh dimanfaatkan  sebagai bahan makanan walaupun rasa pahit hadir selepas hidrolisis. Oleh itu, penyah-pahitan perlu dipertimbangkan untuk membuka jalan kepada penggunaan penuh kerang mentarang hidrolisat sebagai bahan makanan.

 

Kata kunci:  mentarang, Pholas orientalis, hidrolisat, bromelain, kepahitan, ciri-ciri fizikokimia

 

References

1.       Berthou, P., Poutiers, J. M., Goulletquer, P. and Dao, J.C. (2009). Shelled molluscs, in fisheries and agricultural from encyclopedia of life support systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK, 1-19.

2.       Bee Wah, N. (2009). Biological aspect and development of larvae and juvenile of the angelwing clam Pholas orientalis (Gmeline, 1971). Georgetown, Penang: Universiti Sains Malaysia, MSc Thesis, 1-24.

3.       Herpandi, N., Huda, A., Rosma, A. and Wan Nadiah, W. A. (2012). Degree of hydrolysis and free tryptophan content of skipjack tuna (Katsuwonus pelamis) protein hydrolysates produced with different type of industrial proteases.  International Food Research Journal, 19(3): 863 – 867.

4.       Jin, W-G., Wu, H-T., Zhu, B-W. and Ran, X-Q. (2012). Functional properties of gelation-like protein hydrolysates from scallop (Patinopecten yessoensis) male gonad. European Food Research and Technology, 234(5): 863 – 872.

5.       Zhou, D-Y., Zhua, B-W., Qiao, L., Wua, H-T., Lia, D-M., Yanga, J-F. and Murata, Y. (2012).  In vitro antioxidant activity of enzymatic hydrolysates prepared from abalone (Haliotis discus hannai Ino) viscera. Food and Bioproducts Processing, 90: 148 – 154.

6.       Normah, I., Siti Hafsah, M. S. and Nurul Izzaira, A. (2013). Bitterness of green mussel (Perna viridis) hydrolysate as influenced by the degree of hydrolysis. Food Research International Journal, 20(5): 2261 – 2268.

7.       Nilsang, S., Lertsiri, S., Suphantharika, M. and Assavanig, A. (2005). Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. Journal Food Engineering, 70(4): 571 – 578.

8.       Ramos de Armas, R., Diaz, H. G., Molina, R., Gonzalez, M. P. and Uriarte, E.  (2004). Stochastic based descriptors studying peptides biological properties: modelling the bitter tasting threshold of peptides. Biorganic and Medicinal Chemistry, 12: 4815 – 4822.

9.       Normah, I. and Nurfazlika Nashrah M. P.  (2013). Evaluation on the properties of mentarang (Pholas orientalis) protein hydrolysate.  Journal of Tropical Agricultural Science, 36 (2): 199 – 210.

10.    Silvestre, M. P. C., Morais, H. A., Silva, V. D. M. and Silva, M. R. (2013).  Degree of hydrolysis and peptide profile of whey proteins using pancreatin. Journal of the Brazilian Society for Food and Nutrition, 38(3):278 – 290.

11.    AOAC. (2005). Official methods of analysis of international (16th ed.). Washington, DC: Association of Official Analytical Chemist.

12.    Hartree, E. F.  (1972). Determination of proteins: A modification of the lowry method that give a linear photometric response. Analytical Biochemistry, 48: 422 – 427.

13.    Diniz, F. M. and Martin, A. M. (1997). Effects of the extent of enzymatic hydrolysis on functional properties of shark protein hydrolysate. Lebensmittel Wissenschaft and Technologies, 30: 266 – 272.

14.    Haslaniza, H., Maskat, M. Y.   and Wan Aida, W. M. (2010). The effects of enzyme concentration, temperature and incubation time on nitrogen content and degree of hydrolysis of protein precipitate from cockle (Anadara granosa) meat wash water. International Food Research Journal 17: 147 – 152.

15.    Bhaskar, N., Benila, T., Radha, C. and Lalitha, R. G. (2008). Protein hydrolysate from visceral waste proteins of catla (Catla catla): Optimization of hydrolysis conditions for a commercial neutral protease. Bioresource Technology, 99 (10): 4105 – 4111.

16.    Himonides, A. T., Taylor, A. K. D. and Morris, A. J.  (2011). A study of Enzymatic Hydrolysis of Fish Frames Using Model System.  Food and Nutrition Sciences, 2: 575 – 585.

17.    Seo, W. W. H., Lee, H. G. and Baek, H. H. (2008). Evaluation of bitterness in enzymatic hydrolysates of soy protein isolate by taste dilution analysis.  Journal of Food Science, 73: 41 – 46.

18.    Imelda, W.Y.C. (2007). Bitterness in enzymatically-produced hydrolysates of commercial shrimp (Pandalopsis dispar) processing waste. Kelowna, Canada: University of British Columbia, MSc thesis, 15 –185.

19.    Jeffery, R. B., Mary, B., Charlotte, B., Marie, S., Kristen, H., Mark, E. J. and James, L. S. (2002). Contribution of Lactococcus lactis cell envelope proteinase specificity to peptide accumulation and bitterness in reduced-fat cheddar cheese. Applied and Environmental Microbiology, 68(4): 1778 – 1785.

20.    Kristinsson, H. G. and Rasco, B. A. (2000). Fish protein hydrolysates: Production, biochemical and functional properties. Critical Reviews in Food Science and Nutrition, 40: 43 – 81.

21.    Agrawal, V. A. and Chiddarwar, A. P.  (2010). Taste abatement techniques to improve palatability of oral pharmaceuticals: A Review. International Journal of Pharmaceutical Research Development, 2: 1 – 10.

22.    Oliver, C. M., Kher, A., McNaughton, D. and Augustin, M. A.  (2009). Use of FTIR and mass spectrometry for characterization of glycated caseins.  Journal Dairy Research, 76: 105 – 110.

23.    Charalambous, G. and Inglett, G. (2012). Instrumental analysis of food, Recent progress Vol 1. Academic Press. Inc., Fifth Avenue, New York, 315 – 316.

24.    Dalgleish, D. G. and Hunt J. A.  (1995). Protein-protein interactions in Food Materials, in Gaonkar, A.G. editor. Ingredient interactions effect on food quality. Marcel Dekker, Inc, 199 – 205.

25.    Amiza, M. A., Ow, Y. W. and Faazaz A. L. (2013). Physicochemical properties of silver catfish (Pangasius sp.) frame hydrolysate. International Food Research Journal, 20(3):1255 – 1262.

26.    Shahidi, F., Han, X. Q. and Synowiecki, J. (1995). Production and characteristics of protein hydrolysates from capelin. Food Chemistry, 53: 285 – 293.

27.    Kelfala Foh, M. B., Amodou, I., Mabel Foh, B., Kamara, M. T. and Xia, W.  (2010). Functionality and antioxidant properties of tilapia (Oreochromis niloticus) as influenced by the degree of hydrolysis. International Journal of Molecular Science, 11 (4): 1851 – 1869.

28.    Kristinsson, H. G. and Rasco, B. A.  (2000). Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle proteins hydrolyzed with various alkaline proteases. Journal of Agricultural & Food Chemistry, 48(3): 657 – 666.

29.  Damodaran,S., Parkin, K. L. and Fennema, O. R. (2007). Fennema’s food chemistry in amino acids, peptides and proteins. (4th edition). CRC Press Taylor and Francis Group, Boca Raton, 321 – 430.

30.    Cumby, N., Zhong, Y., Naczk, M. and Shahidi, F. (2007). Antioxidant activity and water-holding capacity of canola protein hydrolysates. Journal of Food Chemistry, 109: 144 – 148.




Previous                    Content                    Next