Malaysian Journal of Analytical Sciences Vol 20 No 3 (2016): 601 - 606

DOI: http://dx.doi.org/10.17576/mjas-2016-2003-20

 

 

 

CHEMICAL CHANGES IN SHORTFIN SCAD (Decapterus macrosoma) AT CHILLED (4 °C) AND FROZEN (-18 °C) STORAGE

 

(Perubahan Kimia dalam Ikan Selayang (Decapterus macrosoma) pada Penyimpanan Suhu Dingin (4 °C) dan Sejuk Beku (-18 °C))

 

Fazilah Fazilin Juhari, Norizzah Abd. Rashid*, Cheow Chong Seng, Anida Yusoff, Emilia Azrina Mohd Bakri

 

Department of Food Technology, Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: norizzah850@salam.uitm.edu.my

 

 

Received: 24 February 2015; Accepted: 27 October 2015

 

 

Abstract

The aim of this study was to determine the chemical changes in muscle tissue of shortfin scad during storage at chilled (4 °C) and frozen (-18 °C) conditions for 18 days. The chemical changes were monitored every three days for Thiobarbituric acid (TBA), Peroxide value (PV), Total Volatile Base Nitrogen (TVBN) and Trimethylamine (TMA) content. Results show that there was a significant difference (p<0.05) in peroxide and TBA values between chilled and frozen shortfin scad starting from day 3. The highest PV values occured in chilled and frozen shortfin scad at day 12 (1.57 mEq/kg and 1.13 mEq/kg, respectively), and then decreased due to decomposition of hydroperoxides to secondary products such as aldehydes, alcohols and ketones.  In contrast, TBA reached the highest values at day 15 for both chilled and frozen shortfin scad. For TVBN content, only the chilled sample shows significant increased (p<0.05) with storage time. The TVBN values declined significantly (p<0.05) for frozen shortfin scad. The TMA values for both chilled and frozen shortfin scad increased during storage. However, the TMA values increased at a faster rate in chilled compared to frozen shortfin scad. Based on the PV, TBA, TVBN and TMA values, chilled shortfin scad undergoes spoilage at a faster rate compared to the frozen shortfin scad.

 

Keywords:  shortfin scad, thiobarbituric acid, peroxide value, total volatile base nitrogen, trimethylamine

 

Abstrak

Matlamat kajian ini adalah untuk menentukan perubahan kimia dalam tisu otot ikan selayang semasa penyimpanan pada suhu dingin (4 °C) dan sejuk beku (-18 °C) selama 18 hari. Perubahan kimia dipantau setiap tiga hari melalui ujian Asid Tiobarbiturik (TBA), Nilai Peroksida (PV), Jumlah Bes Nitrogen Meruap (TVBN) dan Trimetilamina (TMA). Hasil kajian menunjukkan terdapat perbezaan ketara (p<0.05) nilai peroksida dan nilai TBA antara ikan selayang yang disimpan pada suhu dingin dan sejuk beku bermula dari hari ketiga. Nilai PV tertinggi bagi ikan selayang berlaku pada hari ke 12 (masing-masing 1.57 mEq/kg dan 1.13 mEq/kg) bagi penyimpanan  suhu dingin dan sejuk beku, dan kemudian menurun disebabkan penguraian hidroperoksida kepada produk sekunder seperti aldehid, alkohol dan keton. Sebaliknya, TBA mencapai nilai tertinggi pada hari ke 15 untuk ikan selayang yang disimpan pada kedua–dua suhu. Bagi nilai TVBN, hanya sampel dingin  menunjukkan  peningkatan ketara (p <0.05) bagi masa penyimpanan. Nilai TVBN menurun dengan ketara (p<0.05) bagi ikan selayang yang disejukbekukan. Nilai TMA untuk ikan selayang yang didingin dan disejukbeku meningkat semasa penyimpanan. Walau bagaimanapun, nilai TMA ikan selayang meningkat pada kadar yang lebih cepat dalam suhu dingin berbanding suhu sejuk beku. Berdasarkan nilai PV, TBA, TVBN dan TMA, ikan selayang yang disimpan pada suhu dingin mengalami kerosakan pada kadar yang lebih cepat berbanding dengan ikan selayang yang disimpan pada suhu sejuk beku.

 

Kata kunci:  ikan selayang, asid tiobarbiturik, nilai peroksida, jumlah bes nitrogen meruap dan trimetilamina

 

References

1.       Nurnadia, A. A., Azrina, A. and Amin, I. (2011). Proximate composition and energetic value of selected marine fish and shellfish from the West Coast of Peninsular Malaysia. International Food Research Journal, 18, 137- 148.

2.       Rosari, M. I., Ma’arut, W. F., and Agustini, T. W. (2014). Pengaruh ekstrak kasar buah mahkota dewa (Phaleria macrocarpal) sebagai antioksidan pada fillet ikan bandeng (Chanos chanos forsk) segar. Jurnal Pengolahan dan Bioteknologi Hasil Perikanan, 3(2), 34-43.

3.       Azhar, K. F. and Nisa, K. (2006). Lipid and their oxidation in Seafood. Journal of The Chemical  Society of Pakistan, 28(3): 289-305.

4.       Yuanita, L. (2006). Oksidasi asam lemak daging sapi dan ikan pada penggunaan natrium c tripolifosfat pemasakan dan penyimpanan. Jurnal Ilmu Dasar, 7(2): 194-200.

5.       Simeonidou, S., Govaris, A., and Vareltzis, K. (1998). Quality assessment of seven Mediterranean fish species during storage on ice. Food Research International, 7: 479-484.

6.       Zeway, A. L. A. (2013). Microbiological and chemical changes of nile tilapia (Oreochromis niloticus L.) fillet during ice storage: effect of age and sex. Advance Journal of Food Science and Technology, 5(10): 1260-1265.

7.       Bouriga, N., Selmi, S., Faure, E. and Trabelsi, M. (2008). Changes in proximate composition and lipid quality of atherina (Atherina Sp.) during sun drying process. Bulletin Institute National Science Technology 35: 69-72.

8.       Razak, Z. K. A., Basri, M., Dzulkefly, K., Razak, C. N. A. and Salleh, A. B. (2001). Extraction and characterization of fish oil from monopterus albus. Malaysian Journal of Analytical Science, 7(1): 217-220.

9.       Association of Official Analytical Chemist, AOAC. (1990). Official Methods of Analysis of the Association of Official Analytical Chemists (15 edition). Washington D.C

10.    Tokur, B., Korkmaz, K. and Ayas, D. (2006). Comparison of two thiobarbituric acid (TBA) method for monitoring  lipid oxidation in fish. E.U. Journal of Fisheries & Aquatic Sciences, 23(3-4): 331 – 334.

11.    Sallam, K. I. (2007). Chemical, sensory and shelf life evaluation of sliced salmon treated with salts of organic acids. Food Chemistry, 101(2): 592-600.

12.    Chaijan, M., Benjakul, S., Visessanguan, W. and Faustman, C. (2006). Changes of lipids in sardine (Sardinilla gibbosa) muscle during iced storage. Food Chemistry, 99: 83-91.

13.    Orak, H. and Kayisoglu, S. (2008). Quality changes in whole, gutted and filleted three fish spesies (Gadus euxinus, Mugil cephalus, Engraulis encrasicholus) at frozen storage period (-26°C). ACTA Scientiarum Polonorum Technologia Alimentaria, 7(3): 15-25.

14.    Ozyurt, G., Kuley, E., Ozkutuk, S. and Ozogul, F. (2009). Sensory, microbiological and chemical assessment of the freshness of red mullet (Mullus barbatus) and goldband goatfish (Upeneus moluccensis) during storage in ice. Food Chemistry, 114(2): 505 – 510.

15.    Kilinc, B., Cakli, S. and Kisla, D. (2003). Quality changes of sardine (Sardina pilchardus) during frozen storage. E.U. Journal of Fisheries & Aquatic Sciences, 20: 139 – 146.

16.    Fan, W., Sun, J., Chen, Y., Qiu, J., Zhang, Y. and Chi, Y. (2009). Effect of chitosan coating on quality and shelf life of silver carp during frozen storage. Food Chemistry, 115(1): 66 – 70.

17.    Jezek, F. and Buchtova, H. (2011). Monitoring of physicochemical changes in frozen fish muscle tissue. Agriculturae Conspectus Scientificus, 76(3): 201 – 204.

18.    Natseba, A., Lwalinda, I., Kakura, E., Muyenja, C. K. and Muyong, J. H. (2005). Effect of pre freezing icing duration on quality changes in frozen nile perch (Lates nitoticus). Food Research International, 35: 469 – 474.

19.    Robertson, G. L. (2010). Food packaging and shelf life: A practical Guide. Boca Raton: CRC Press.

 




Previous                    Content                    Next