Malaysian Journal of Analytical Sciences Vol 20 No 3 (2016): 633 - 641

DOI: http://dx.doi.org/10.17576/mjas-2016-2003-24

 

 

 

CONDUCTIVITY AND THERMAL STABILITY OF SOLID ACID COMPOSITES CsH2PO4/NaH2PO4/SiO2

 

(Konduktiviti dan Kestabilan Terma Asid Pepejal Komposit CsH2PO4/NaH2PO4/SiO2)

 

Norsyahida Mohammad1, Abu Bakar Mohamad1, 2, Abdul Amir Hassan Kadhum2, Loh Kee Shyuan1*

 

1Fuel Cell Institute

2Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: ksloh@ukm.edu.my

 

 

Received: 5 February 2016; Accepted: 22 April 2016

 

 

Abstract

Solid acid composites CsH2PO4/NaH2PO4/SiO2 with different mole ratios of CsH2PO4 and NaH2PO4 to SiO2 were synthesized and characterized. Preliminary infrared measurements of CsH2PO4 and its composites indicated that hydrogen bonds breaking and formation were detected between 1710 to 2710 cm-1, while the rotation of phosphate tetrahedral anions occurred between 900 and 1200 cm-1.  The superprotonic transition of CsH2PO4/NaH2PO4/SiO2 composite was identified at superprotonic temperatures between 230 and 260 °C, under atmospheric pressure. This study reveals higher conductivity values for composites with higher CsH2PO4 (CDP) content. Solid acid composite CDP 613 appeared as the composite with the highest conductivity that is 7.2 x 10-3 S cm-1 at 230 °C. Thermal stability of the solid acid composites such as temperature of dehydration, melting and decomposition were investigated. The addition of NaH2PO4 lowers the dehydration temperature of the solid acid composites.

 

Keywords: solid acid, conductivity, thermal analysis, caesium dihydrogen phosphate, fuel cell

 

Abstrak

Asid pepejal komposit CsH2PO4/NaH2PO4/SiO2 dengan nisbah mol CsH2PO4 kepada SiO2 dan NaH2PO4 kepada SiO2 yang berbeza telah disintesis dan dicirikan dalam ujikaji ini. Pencirian awal sinar inframerah menunjukkan bahawa pemecahan dan pembentukan ikatan hidrogen dikesan antara 1710 cm-1 dan 2710 cm-1, manakala putaran anion tetrahedron fosfat berlaku diantara 900 cm-1 dan 1200 cm-1. Fasa peralihan berkonduktiviti tinggi bagi asid pepejal komposit CsH2PO4/NaH2PO4/SiO2 telah dikenal pasti antara suhu 230 hingga 260 °C, di bawah tekanan atmosfera. Nilai kekonduksian proton adalah lebih tinggi bagi komposit yang mempunyai kandungan CsH2PO4 (CDP) yang lebih tinggi. Asid pepejal komposit CDP 613 telah muncul sebagai komposit dengan kekonduksian tertinggi iaitu 7.2 x 10-3 S cm-1 pada suhu 230 °C. Kestabilan terma asid pepejal komposit seperti suhu dehidrasi, takat lebur dan penguraian telah dikenal pasti melalui analisis termogravimetri dan kalorimeter imbasan perbezaan. Penambahan NaH2PO4 merendahkan suhu dehidrasi asid pepejal komposit.

 

Kata kunci: asid pepejal,  kekonduksian, analisa terma, sesium dihidrogen fosfat, sel fuel

 

References

1.       Dupuis, A.-C. (2011).  Proton exchange membranes for fuel cells operated at medium temperatures: Materials and experimental techniques. Progress in Materials Science, 56(3): 289 - 327.

2.       Boysen, D. A. (2004). Superprotonic solid acids: structure, properties, and applications (PhD Dissertation), California Institute of Technology. Retrieved from http://resolver.caltech.edu/CaltechETD:etd-05282004-155105 

3.       Haile, S. M., Chisholm, C. R. I., Sasaki, K., Boysen, D. A. and Uda, T. (2006).  Solid acid proton conductors: from laboratory curiosities to fuel cell electrolytes. Faraday Discussions, 134: 17 - 39.

4.       Taninouchi, Y.-K., Uda, T., Awakura, Y., Ikeda, A. and Haile, S. M. (2007).  Dehydration behavior of the superprotonic conductor CsH2PO4  at moderate temperatures: 230 to 260 °C. Journal of Materials Chemistry, 17(30): 3182 - 3189.

5.       Alberti, G., Casciola, M., Pica, M., Tarpanelli, T. and Sganappa, M. (2005).  New preparation methods for composite membranes for medium temperature fuel cells based on precursor solutions of insoluble inorganic compounds. Fuel Cells, 5(3): 366 - 374.

6.       Peighambardoust, S. J., Rowshanzamir, S. and Amjadi, M. (2010).  Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy, 35(17): 9349 - 9384.

7.       Jaafar, J., Ismail, A. F., Matsuura, T. and Norddin, M. N. A. M. (2013).  Stability of SPEEK-triaminopyrimide polymer electrolyte membrane for direct methanol fuel cell application. Sains Malaysiana, 42(11): 1671 - 1677.

8.       Hashim, N., Kamarudin, S. K. and Daud, W. R. W. (2010).  Design and development of micro direct methanol fuel cell  (μDMFC) for portable application. Sains Malaysiana, 39(6): 1015 - 1023.

9.       Haile, S. M., Boysen, D. A., Chisholm, C. R. I. and Merle, R. B. (2001).  Solid acids as fuel cell electrolytes. Nature, 410: 910 - 913.

10.    Unnikrishnan, S. (2009). Micromachined dense palladium electrodes for thin-film solid acid fuel cells. (PhD Dissertation), University of Twente, Enschede. Retrieved from http://doc.utwente.nl/68765/ 

11.    Haile, S. M. (2003). Materials for fuel cells, in Materials Today. Elsevier Science Ltd.

12.    Merle, R. B., Chisholm, C. R. I., Boysen, D. A. and Haile, S. M. (2002).  Instability of sulfate and selenate solid acids in fuel cell environments. Energy & Fuels, 17(1): 210 - 215.

13.    Botez, C. E., Hermosillo, J. D., Zhang, J., Qian, J., Zhao, Y., Majzlan, J., Chianelli, R. R. and Pantea, C. (2007).  High-temperature phase transitions in CsH2PO4 under ambient and high-pressure conditions: A synchrotron x-ray diffraction study. The Journal of Chemical Physics, 127(19): 194701 -194706.

14.    Baranov, A. I., Khiznichenko, V. P. and Shuvalov, L. A. (1989).  High temperature phase transitions and proton conductivity in some kdp-family crystals. Ferroelectrics, 100(1): 135 - 141.

15.    Baranov, A. I., Grebenev, V. V., Khodan, A. N., Dolbinina, V. V. and Efremova, E. P. (2005).  Optimization of superprotonic acid salts for fuel cell applications. Solid State Ionics, 176(39–40): 2871 - 2874.

16.    Martsinkevich, V. V. and Ponomareva, V. G. (2012).  Double salts Cs1-xMxH2PO4 (M = Na, K, Rb) as proton conductors. Solid State Ionics, 225(0): 236 - 240.

17.    Otomo, J., Minagawa, N., Wen, C.-j., Eguchi, K. and Takahashi, H. (2003).  Protonic conduction of CsH2PO4 and its composite with silica in dry and humid atmospheres. Solid State Ionics, 156(3–4): 357 - 369.

18.    Ponomareva, V. G. and Shutova, E. S. (2007).  High-temperature behavior of CsH2PO4 and CsH2PO4–SiO2 composites. Solid State Ionics, 178(7–10): 729 - 734.

19.    Matsui, T., Kukino, T., Kikuchi, R. and Eguchi, K. (2005).  An intermediate temperature proton-conducting electrolyte based on a CsH2PO4 ∕ SiP2O7 composite. Electrochemical and Solid-State Letters, 8(5): 256 - 258.

20.    Otomo, J., Ishigooka, T., Kitano, T., Takahashi, H. and Nagamoto, H. (2008).  Phase transition and proton transport characteristics in CsH2PO4/SiO2 composites. Electrochimica Acta, 53(28): 8186 - 8195.

21.    Naidoo, S. (2004). Cesium Hydrogen Sulphate and Cesium Dihydrogen Phosphate Based Solid Composite Electrolyte for Fuel Cell Application. University of the Western Cape.  

22.    Panuh, D., Muchtar, A., Muhamad, N., Majlan, E.H. and Daud, W. R. W. (2014). Sm0.2Ce0.8O1.90 (SDC)/ Y0.25Bi0.75O1.5 (YSB) bilayered electrolytes for intermediate solid oxide fuel cells. Sains Malaysiana, 43(11): 1769 - 1774.

23.    Hosseini, S., Wan Daud, W.R., Badiei, M., Kadhum, A. A. H. and Mohammad, A. B. (2011).  Effect of surfactants in synthesis of CsH2PO4 as protonic conductive membrane. Bulletin of Materials Science, 34(4): 759 - 765.

24.    Hosseini, S., Mohamad, A., Kadhum, A. and Wan Daud, W. R. (2010).  Thermal analysis of CsH2PO4 nanoparticles using surfactants CTAB and F-68. Journal of Thermal Analysis and Calorimetry, (1): 197 - 202.

25.    Boysen, D. A., Haile, S. M., Liu, H. and Secco, R. A. (2003).  High-Temperature Behavior of CsH2PO4 under both ambient and high pressure conditions. Chemistry of Materials, 15(3): 727 - 736.

26.    Hosseini, S. (2009). Synthesis of proton conducting membrane using cesium dihydrogen phosphate nanoparticles for the fabrication of membrane electrode assembly for fuel cell. Universiti Kebangsaan Malaysia.  

27.    Gupta, L. C., Rao, U. R. K., Venkateswarlu, K. S. and Wani, B. R. (1980).  Thermal stability of CsH2PO4. Thermochimica Acta, 42(1): 85 - 90.

 




Previous                    Content                    Next