Malaysian Journal of Analytical Sciences Vol 20 No 3 (2016): 660 - 669

DOI: http://dx.doi.org/10.17576/mjas-2016-2003-27

 

 

 

EFFECT OF PROCESS PARAMETERS ON THE SYNTHESIS OF POLYPYRROLE BY THE TAGUCHI METHOD

 

(Kesan Pembolehubah Proses Terhadap Sintesis Polipirola Menggunakan Kaedah Taguchi)

 

Rika Sri Utami1, Ifa Puspasari1, Loh Kee Shyuan1*, Abu Bakar Mohamed1, 2, Sagir Alva3

 

1Fuel Cell Institute

2Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Mechanical Engineering Department, Engineering Faculty,

Mercu Buana University, 11650 Jakarta, Indonesia

 

*Corresponding author: ksloh@ukm.edu.my 

 

 

Received: 5 February 2016; Accepted: 22 April 2016

 

 

Abstract

Polypyrrole is a conductive polymer that is widely used in electrochemical applications. To identify the effects of different parameters on the synthesis of polypyrrole, an experimental design based on an orthogonal array L9 (34) proposed by Taguchi was applied. The parameters investigated were the oxidant type, molar ratio of oxidant: pyrrole, reaction time and dopant concentration, whereas the response variables observed were the yield, particle size and conductivity. Field Emission Scanning Electron Microscope (FESEM) characterization was used to study the morphology characteristics of the polypyrrole particles. Based on the signal-to-noise (S/N) ratio and the results of analysis of variance (ANOVA), the molar ratio of oxidant: pyrrole and the oxidant type significantly affected the yield and conductivity of the synthesized polypyrrole particles.

 

Keywords:  design of experiment, conductive polymer, yield, particle size, conductivity

 

Abstrak

Polipirola merupakan polimer konduktif yang digunakan secara meluas dalam aplikasi elektrokimia. Bagi tujuan mengenal pasti kesan-kesan parameter yang berbeza pada sintesis polipirola, reka bentuk eksperimen berdasarkan ortogon L9 (34) yang dicadangkan oleh Taguchi telah digunakan. Parameter yang dikaji ialah jenis oksidan, nisbah molar oksidan: pirola, masa tindak balas dan kepekatan pendopan, manakala pemboleh ubah sambutan yang diperhatikan adalah jumlah hasil, saiz zarah dan kekonduksian. Pencirian FESEM telah digunakan untuk mengkaji morfologi zarah polipirola. Berdasarkan nisbah isyarat-hingar (S/N) dan hasil analisis varians (ANOVA), nisbah molar oksidan: pirola dan jenis oksidan memberi kesan yang ketara kepada hasil dan kekonduksian dari sintesis polipirola.

 

Kata kunci: reka bentuk eksperimen, polimer konduktif, jumlah hasil, saiz zarah, kekonduksian

 

References

1.       Shahbazian, A., Navarchian, A. H. and Pourmehr, M. (2009). Application of Taguchi method to investigate the effects of process factors on the performance of batch emulsion polymerization of vinyl chloride. Journal of Applied Polymer Science, 113 (5): 2739-2746.

2.       Al-Dulaimi, A. A., Hashim, S. and Khan, M. (2011). Corrosion protection of carbon steel using polyaniline composite with inorganic pigments. Sains Malaysiana, 40 (7): 757-763.

3.       Izzuddin, I., Jumali, M. H. H., Yahaya, M. and Salleh, M. M. (2012). New hybridization approach of titanium organometallic: PANI thin films as room temperature gas sensors. Sains Malaysiana, 41 (8): 1017-1021.

4.       Juamli, M. H. H., Ramli, N., Izzuddin, I., Salleh M. M. and Yahaya, M. (2011). Influence of PANI additions on methanol sensing properties of ZnO thin films. Sains Malaysiana, 40 (3): 203-208.

5.       Khan, A. A. and Paquiza, L. (2011). Electrical behavior of conducting polymer based ‘polymeric–inorganic’nanocomposite: Polyaniline and polypyrrole zirconium titanium phosphate. Synthetic Metals, 161 (9): 899-905.

6.       Qi, K., Qiu, Y., Chen, Z. and Guo, X. (2012). Corrosion of conductive polypyrrole: Effects of environmental factors, electrochemical stimulation, and doping anions. Corrosion Science, 60: 50-58.

7.       Ghamouss, F., Brugère, A., Anbalagan, A. C., Schmaltz, B., Luais, E. and Tran-Van, F. (2013). Novel glycerol assisted synthesis of polypyrrole nanospheres and its electrochemical properties. Synthetic Metals, 168: 9-15.

8.       Kim, D. K., Oh, K. W., Ahn, H. J. and Kim, S. H. (2008). Synthesis and characterization of polypyrrole rod doped with ptoluenesulfonic acid via micelle formation. Journal of Applied Polymer Science, 107 (6): 3925- 3932.

9.       Karaca, E., Pekmez, N. Ö. and Pekmez, K. (2014). Galvanostatic deposition of polypyrrole in the presence of tartaric acid for electrochemical supercapacitor. Electrochimica Acta, 147: 545-556.

10.    Yuan, X., Ding, X.-L., Wang, C.-Y. and Ma, Z.-F. (2013). Use of polypyrrole in catalysts for low temperature fuel cells. Energy & Environmental Science, 6 (4): 1105-1124.

11.    Pina, C. D., Falletta, E., Faro, M. L., Pasta, M. and Rossi, M. (2009). Gold-catalysed synthesis of polypyrrole. Gold Bulletin, 42 (1): 27-33.

12.    Hajian, M., Koohmareh, G. A. and Rastgoo, M. (2010). Investigation of factors affecting synthesis of polyvinyl butyral by Taguchi method. Journal of Applied Polymer Science, 115 (6): 3592-3597.

13.    Tam, P. D. and Hieu, N. V. (2011). Conducting polymer film-based immunosensors using carbon nanotube/antibodies doped polypyrrole. Applied Surface Science, 257 (23): 9817-9824.

14.    Yang, C., Wang, X., Wang, Y. and Liu, P. (2012). Polypyrrole nanoparticles with high dispersion stability via chemical oxidative polymerization in presence of an anionic–non-ionic bifunctional polymeric surfactant. Powder Technology, 217: 134-139.

15.    Upadhyay, J. and Kumar, A. (2013). Structural, thermal and dielectric studies of polypyrrole nanotubes synthesized by reactive self degrade template method. Materials Science and Engineering: B, 178 (15): 982- 989.

16.    Hazarika, J. and Kumar, A. (2013). Controllable synthesis and characterization of polypyrrole nanoparticles in sodium dodecylsulphate (SDS) micellar solutions. Synthetic Metals, 175: 155-162.

17.    Yuan, X., Kong, H.-C., He, Y.-J., Ma, Z.-F., Yang, Y. and Li, Q. (2014). Effects of composition on electrochemical properties of a non-precious metal catalyst towards oxygen reduction reaction. International Journal of Hydrogen Energy, 39 (28): 16006-16014.

18.    Karami, H. and Nezhad, A. R. (2013). Investigation of pulse-electropolymerization of conductive polypyrrole nanostructures. International Journal of Electrochemical Science, 8: 8905-8921.

19.    Liao, Y., Wang, X., Qian, W., Li, Y., Li, X. and Yu, D.-G. (2012). Bulk synthesis, optimization, and characterization of highly dispersible polypyrrole nanoparticles toward protein separation using nanocomposite membranes. Journal of Colloid and Interface Science, 386 (1): 148-157.

20.    Paramo-García, U., Ibanez, J. & Batina, N. (2013). AFM analysis of polypyrrole films synthesized in the presence of selected doping agents. International Journal of Electrochemical Science, 8: 2656-2669.

21.    Ashassi-Sorkhabi, H. and Bagheri, R. (2014). Sonoelectrochemical synthesis, optimized by Taguchi method, and corrosion behavior of polypyrrole-silicon nitride nanocomposite on St-12 steel. Synthetic Metals, 195: 1-8.

22.    Wang, Y., Yang, C. and Liu, P. (2011). Acid blue AS doped polypyrrole (PPy/AS) nanomaterials with different morphologies as electrode materials for supercapacitors. Chemical Engineering Journal, 172 (2-3): 1137-1144.

23.    Hung, S.-L., Wen, T.-C. and Gopalan, A. (2002). Application of statistical design strategies to optimize the conductivity of electrosynthesized polypyrrole. Materials Letters, 55 (3): 165-170.

24.    Taguchi, G. (1990). Introduction to Quality Engineering: Designing Quality into Products and Processes, Asian Productivity Organization, Tokyo.

25.    Bendell, A., Disney, J. & Pridmore, W. A. (1989). Taguchi Methods: Applications in World Industry. IFS Publications, UK.

26.    Taguchi, G. (1962). Tables of orthogonal arrays and linear graphs. Maruzen, Tokyo.

27.    Li, X.-G., Li, A., Huang, M.-R., Liao, Y. and Lu, Y.-G. (2010). Efficient and scalable synthesis of pure polypyrrole nanoparticles applicable for advanced nanocomposites and carbon nanoparticles. The Journal of Physical Chemistry C, 114 (45): 19244-19255.

28.    Lascelles, S., McCarthy, G., Butterworth, M. and Armes, S. (1998). Effect of synthesis parameters on the particle size, composition and colloid stability of polypyrrole–silica nanocomposite particles. Colloid and Polymer Science, 276 (10): 893-902.

29.    Omastová, M., Mosnáčková, K., Fedorko, P., Trchová, M. and Stejskal, J. (2013). Polypyrrole/silver composites prepared by single-step synthesis. Synthetic Metals, 166: 57-62.

30.    Yang, C. and Liu, P. (2010). Water-dispersed polypyrrole nanoparticles via chemical oxidative polymerization in the presence of a functional polyanion. Reactive and Functional Polymers, 70 (10): 726-731.

31.    Wang, X., Yang, C., Li, H. and Liu, P. (2013). Synthesis and electrochemical performance of well-defined flake-shaped sulfonated graphene/polypyrrole composites via facile in situ doping polymerization. Electrochimica Acta, 111: 729-737.

 




Previous                    Content                    Next