Malaysian Journal of Analytical Sciences Vol 20 No 3 (2016): 651 - 659

DOI: http://dx.doi.org/10.17576/mjas-2016-2003-26

 

 

 

EFFECT OF USING PITAYA PEEL AS DYE-SENSITIZER AND DYE MOLECULES IN ELECTROLYTE FOR PHOTOELECTROCHEMICAL REACTION

 

(Kesan Penggunaan Kulit Buah Naga Sebagai Pemeka-Pewarna dan Molekul Pewarna di dalam Elektrolit bagi Tindak Balas Fotoelektrokimia)

 

Siti Nur Hidayah Jaafar1, Lorna Jeffery Minggu1*, Khuzaimah Ariffin1, Mohammad B. Kasssim1, 2,

Wan Ramli Wan Daud1, 3

 

1Fuel Cell Institute

2School of Chemical Sciences and Food Technology, Faculty of Science and Technology

3Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: lorna_jm@ukm.edu.my

 

 

Received: 5 February 2016; Accepted: 22 April 2016

 

 

Abstract

Natural dye sensitizer in photoelectrochemical shows a great potential in improving the efficiency of metal oxide semiconductor especially Titanium dioxide (TiO2) due to its prominent in absorbing visible light and also low cost. In this work, the effect of using pitaya peel as natural dye sensitizes to TiO2 has been studied through characterizations analysis and PEC test. The bare TiO2 thin films were fabricated on Fluorine-doped tin oxide (FTO) glass substrate by doctor blade method meanwhile dye-sensitized TiO2 thin films prepared by immersion of TiO2 in the dye extracts. The fabricated thin films were characterized with Scanning Electron Microscopy (SEM), X-ray difractometer (XRD), UV-Vis spectrophotometer and photoelectrochemical analysis. The surface of TiO2 was porous and uniform meanwhile dye particles could not been observed due to very small size. The energy band gap of dye-sensitized TiO2 from the UV-Vis spectrum is 2.1 eV which is smaller than bare TiO2 (3.7 eV). Meanwhile, photoactivities of dye-sensitized TiO2 has the highest compared to bare TiO2 photoelectrodes which is 127µA/cm2 in 6.25% v/v of pitaya dye in the electrolyte.

 

Keywords: titanium dioxide, dye-sensitizers, betalains, photoelectrochemical cell, water splitting

 

Abstrak

Pemeka-pewarna semulajadi di dalam fotoelektromia (PEC) menunjukkan potensi yang bagus untuk meningkatkan keupayaan semikonduktor logam oksida terutamanya titanium dioksida (TiO2) disebabkan kemampuannya untum menyerap cahaya nampak dan kos yang rendah. Di dalam penyelidikan ini, kesan menggunakan kulit buah naga sebagai pemeka-pewarna semulajadi terhadap TiO2 telah dikaji melalui pencirian dan analisis fotoelektrokimia. Filem nipis TiO2 asli telah dihasilkan melalui kaedah Doctor blade di atas kepingan kaca bersalut FTO (Stanum oksida terdop fluorin) manakala filem nipis TiO2 dengan pewarna-pemeka telah dihasilkan dengan merendam TiO2 ke dalam larutan ekstrak pewarna. Filem nipis yang telah terbentuk telah melalui beberapa analisis pencirian iaitu, Mikroskopi Elektron Imbasan (SEM), Difraktometer Pembelauan Sinar-X (XRD), Spektrofotometer Ultralembayung dan Cahaya Nampak (UV-Vis) dan juga ujian fotoelektrokimia. Permukaan TiO2 adalah berliang dan seragam manakala zarah pewarna tidak dapat dilihat disebabkan saiznya yang terlalu kecil. Jurang tenaga filem nipis TiO2 dengan pewarna-pemeka adalah lebih rendah iaitu 2.1 eV jika dibandingkan dengan TiO2 asli (3.7 eV). Manakala, fotoaktiviti bagi fotoelektrod TiO2 dengan pewarna-pemeka adalah lebih tinggi daripada TiO2 asli dengan 127µA/cm2 di dalam kepekatan 6.25% v/v pewarna di dalam elektrolit.

 

Kata kunci: titanium dioksida, pemeka-pewarna, betalain, sel fotoelektrokimia, pembelahan air

 

References

1.       Jeng, K.T., Liu, Y.C., Leu, Y.F., Zeng, Y.Z., Chung, J.C. and Wei, T.Y. (2010). Membrane electrode assembly-based photoelectrochemical cell for hydrogen generation. International Journal of Hydrogen Energy,  35(20): 10890 - 10897.

2.       Ng, K. H., Minggu, L. J., Jumali, M. H. and Kassim, M. (2012). Fotoelektrod tungsten trioksida terdop nikel untuk tindak balas pembelahan air fotoelektrokimia. Sains Malaysiana,  41(7): 893 – 899.

3.       Manoharan, K. and Venkatachalam, P. (2015). Photoelectrochemical performance of dye sensitized solar cells based on aluminum-doped titanium dioxide structures. Materials Science in Semiconductor Processing,  30: 208 – 217.

4.       Al-Bat’hi, S. A. M., Alaei, I. and Sopyan, I. (2013). Natural photosensitizers for dye sensitized solar cells. International  Journal of Renewable Energy Research,  3(1): 138 - 143.

5.       Mark Lee, W. F., Minggu, L. J. and Kassim, M. (2012). Sifat foto-kimia kompleks molibdenum ditiolena. Sains Malaysiana,  41(5): 597 – 601.

6.       Zhang, J., Jarboui, A., Vlachopoulos, N., Jouini, M., Boschloo, G. and Hagfeldt, A. (2015). Photoelectrochemical polymerization of EDOT for solid state dye sensitized solar cells: role of dye and solvent. Electrochimica Acta,   179: 220 - 227.

7.       Calogero, G., Yum, J.-H., Sinopoli, A., Di Marco, G., Gratzel, M. and Nazeeruddin, M. K. (2012). Anthocyanins and betalains as light-harvesting pigments for dye-sensitized solar cells. Solar Energy,  86: 1563 – 1575.

8.       Tennakone, K., Jayaweera, P. V. V. and Bandaranayake, P. K. M. (2003). Dye-sensitized photoelectrochemical and solid-state solar cells: charge separation, transport and recombination mechanisms. Journal of Photochemistry and Photobiology A: Chemistry,  158: 125 – 130.

9.       Torchani, A., Saadaoui, S., Gharbi, R. and Fathallah, M. (2015). Sensitized solar cells based on natural dyes. Current Applied Physics,  15: 307 - 312.

10.    Calogero, G., Di Marco, G., Caramori, S., Cazzanti, S., Argazzic, R. and Bignozzi, C.A. (2009). Natural dye senstizers for photoelectrochemical cells. Energy & Environmental Science,  2: 1162 -1172.

11.    Khan, M. A., Khan, S. M. M., Mohammed, M. A., Sultana, S., Islam, J. M. M. and Uddin, J. (2012). Sensitization of nanocrystalline titanium dioxide solar cells using natural dyes: Influence of acids medium on coating formulation. American Academic & Scholarly Research Journal,  4 (5): 1 - 10..

12.    Shanmugam, V., Manoharan, S., Anandan, S. and Murugan, R. (2013). Performance of dye-sensitized solar cells fabricated with extracts from fruits of ivy gourd and flowers of red frangipani as sensitizers. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 104: 35 - 40.

13.    Liao, C. H., Huang, C. W. and Wu, J. C. S. (2012). Hydrogen production from semiconductor-based photocatalysis via water splitting. Catalysts,  2: 490 - 516.

14.    Zhang, D., Lanier, S. M., Downing, J. A., Avent, J. L., Lum, J. and McHale, J. L. (2008). Betalain pigments for dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry,  195: 72 – 80.

15.    Rebecca, O. P. S., Zuliana, R., Boyce, A. N. and Chandran, S. (2008). Determining pigment extraction effieciency and pigment stability of dragon fruit (Hylocereus polyrhizus). Journal of Biological Sciences,  8(7): 1174 - 1180.

16.    Oprea, C. I., Dumbrava, A., Enache, I., Georgescu, A. and Gîrtu, M. A. (2012). A combined experimental and theoretical study of natural betalain pigments used in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry,  240: 5 - 13.

17.    Jamilah, B., Shu, C. E., Kharidah, M., Dzulkifly, M. A. and Noranizan, A. (2011). Physico-chemical characteristics of red pitaya (Hylocereus polyrhizus) peel. International Food Research Journal,  18: 279 - 286.

18.    Spurr, R.A. and Myers, H. (1957). Quantitative analysis of anatase-rutile mixtures with an X-Ray diffractometer. Analytical Chemistry,  29(5): 760 - 762.

19.    Scherrer, P. (1918). Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachr. Ges. Wiss. Göttingen,  26: 98 - 100.

20.    Minggu, L. J., Daud, W. R. W. and Kassim, M. (2010). An overview of photocells and photoreactors for photoelectrochemical water splitting. International Journal of Hydrogen Energy,  35: 5233 - 5244.

21.    Hamadanian, M., Safaei-Ghomi, J., Hosseinpour, M., Masoomi, R. and Jabbari, V. (2014). Uses of new natural dye photosensitizers in fabrication of high potential dye-sensitizedsolarcells (DSSCs). Materials Science in Semiconductor Processing, 27: 733 - 739.

22.    Kusmierek, E. and Chrzescijanska, E. (2015). Application of TiO2–RuO2/Ti electrodes modified with WO3 in electro- and photoelectrochemical oxidation of Acid Orange 7 dye. Journal of Photochemistry and Photobiology A: Chemistry,  302: 59 – 68.

23.    Woo, K. K., Ngou, F. H., Ngo, L. S., Soong, W. K. and Tang, P. Y. (2011). Stability of betalain pigment from red dragon fruit (Hylocereus polyrhizus). American Journal of Food Technology,  6(2): 140 - 148.

24.    Hug, H., Bader, M., Mair, P. and Glatzel, T. (2014). Biophotovoltaics: Natural pigments in dye-sensitized solar cells. Applied Energy,  115: 216 – 225.

25.    Mark Lee, W. F., Ng, K. H., Minggu, L. J., Umar, A. A. and Kassim, M. (2012). Penentuan aras jalur tenaga kompleks tungsten nitrosilditiolena. Sains Malaysiana,  41(4): 439 - 444.

26.    Grimes, C. A., Varghese, O. K. and Ranjan, S. Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis. 2008: Springer Science+Business Media.

27.    Heo, N., Jun, Y. and Park, J. H. (2013). Dye molecules in electrolytes: new approach for suppression of dye-desorption in dye-sensitized solar cells. Scientific Reports,  3: 1712.

 




Previous                    Content                    Next