Malaysian Journal of Analytical Sciences Vol 20 No 3 (2016): 477 - 483

DOI: http://dx.doi.org/10.17576/mjas-2016-2003-03

 

 

 

TAILORING PEPTIDOMIMETICS ANTIFREEZE PROTEIN FROM EXOTIC ANTARCTIC MARINE

 

(Pengubahsuaian Protein Antibeku Peptidomimetik daripada Hidupan Eksotik Marin Antartika)

 

Mohd Basyaruddin Abdul Rahman1, 2*, Azren AidaAsmawi1,2, Emilia Abdulmalek1,2, Abu Bakar Salleh1,

Bimo Ario Tejo3

 

1Enzyme and Microbial Technology Research Centre (EMTech)

2Department of Chemistry, Faculty of Science

Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

3Center for Infectious Diseases Research,

Surya University, Jalan Boulevard Gading Serpong Blok O/1,

Scientia Business Park, Tangerang 15810, Indonesia

 

*Corresponding author: basya@upm.edu.my

 

 

Received: 9 December 2014; Accepted: 22 March 2016

 

 

Abstract

Antifreeze proteins (AFPs) are synthesized by various cold-adapted organisms to enable them to survive in subzero environment. The unique role of AFPs recently attracted enormous interest to develop them as commercial products. In this work, we have studied the antifreeze activity of short helical protein fragments (peptides) instead of the entire antifreeze protein of Antarctic yeast Glaciozyma antarctica. Several short peptide segments were designed according to amino acid sequence of helical region of AFP-1 G.antarctica, which are assumed to be involved in its antifreeze activity. We have demonstrated that short peptide segments derived from yeast AFP possess antifreeze activity and result in modification of the ice crystals growth rates and habits. This strategy has enabled the preparation of short AFP with high antifreeze activity in large amount of quantities at a low cost further opens the chance of developing the commercial potentials of AFPs.

 

Keywords: Antarctic yeast, antifreeze protein (AFP), Glaciozyma antarctica, ice recrystallization inhibition (IRI)

 

Abstrak

Protein antibeku (AFPs) disintesis oleh pelbagai adaptasi-sejuk organisma untuk membolehkan ia bertahan di persekitaran suhu bawah takat beku. Peranan unik AFPs telah menarik minat yang besar bagi tujuan produk komersil. Di dalam kajian ini, kami telah mengkaji aktiviti protein antibeku berlingkar yang pendek (peptida) daripada protein antibeku Antartika yis Glaciozyma antarctica. Beberapa segmen peptida pendek direka mengikut jujukan asid amino berlingkar AFP-1 G.antarctica, yang dianggap terlibat dalam aktiviti antibeku. Kami telah menunjukkan bahawa segmen – segmen peptida pendek yang diperolehi daripada yis AFP mempunyai aktiviti antibeku dan menyebabkan pengubahsuaian kadar pertumbuhan dan tabiat hablur ais. Strategi ini telah membolehkan penyediaan AFP pendek dengan aktiviti antibeku yang tinggi dalam jumlah kuantiti besar pada kos yang rendah seterusnya membuka peluang untuk membangunkan potensi komersial AFPs.

 

Kata kunci: yis Antartika, protein antibeku (AFP), Glaciozyma antarctica, perencatan penghabluran ais (IRI)

 

References

1.       DeVries, A. L. (1971). Glycoproteins as biological antifreeze agents in antarctic fishes. Science 172: 1152 – 1155.

2.       Scholander, P. F., Van Dam, L., Kanwisher, J. W., Hammel, H. T. and Gordon, M. S. (1957). Supercooling and osmoregulation in arctic fish. Journal of Cellular and Comparative Physiology, 49: 5 – 24.

3.       Sicheri, F. and Yang, D. S (1995). Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375: 427 – 431.

4.       Davies P. L., Baardsnes, J., Kuiper, M. J. and Walker, V. K. (2002). Structure and function of antifreeze proteins. Philosophical Transactions of the Royal Society of London B: Biological Sciences 357: 927 – 935.

5.       Nutt, D. R. and Smith, J. C. (2008). Dual function of hydration layer around an antifreeze protein revealed by atomic molecular dynamics simulations. Journal American Chemical Society 130: 13066 -13073.

6.       Regand, A. and Goff, H. D. (2006). Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass. Journal of Dairy Science, 89: 49 – 57.

7.       Zhang, C., Zhang, H. and Wang, L. (2007). Effect of carrot (Daucus carota) antifreeze proteins on the fermentation capacity of frozen dough. Food Research International 40: 763 – 769.

8.       Muldrew, K., Rewcastle, J., Donnell, B. J., Saliken, J. C., Liang, S., Goldie, S., Olson, M., Baissalov, R. and Sandison, G. (2001). Flounder antifreeze peptides increase the efficacy of cryosurgery. Cryobiology 42: 182 – 189.

9.       Fuller, B. J. (2004). Cryoprotectants: the essential antifreezes to protect life in the frozen state. CryoLetters 25: 375 – 388.

10.    Ng, N. F., Trinh, K. Y. and Hew, C. L. (1986). Structure of an antifreeze polypeptide precursor from the sea raven Hemitripterus americanus. Journal of Biological Chemistry 261: 15690 – 15695.

11.    Ng, N. F. and Hew C. L. (1992). Structure of an antifreeze polypeptide from the sea raven. Disulfide bonds and similarity to lectin-binding proteins. Journal of Biological Chemistry 267: 16069 – 16075.

12.    Chao, H., Davies, P. L., Skyes, B. D. and Sonnichsen, F. D. (1993). Use of proline mutants to help solve the NMR solution structure of type III antifreeze protein. Protein Science 2: 1411 – 1428.

13.    Jia, Z., DeLuca, C. I. and Davies, P. L. (1995). Crystallization and preliminary X-ray crystallographic studies on Type III antifreeze protein. Protein Science 4: 1236 – 1238.

14.    DeLuca, C. I., Chao, H., Sonnichsen, F. D., Skyes, B. D. and Davies, P. L. (1996). Effect of type III antifreeze protein dilution and mutation on the growth inhibition of ice. Biophysical Journal 71: 2346 –2355.

15.    Sonnichsen, F. D., DeLuca, C. I., Davies, P. L. and Sykes, B. D. (1996). Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein-ice interaction. Structure 4: 1325 – 1337.

16.    Deng, G., Andrews, D. W. and Laursen, R. A. (1997). Amino acid sequence of a new type of antifreeze protein, from the longhorn sculpin Myoxocephalus octodecimspinosis. FEBS Letters 402: 17 – 20.

17.    Liou, Y. C., Davies, P. L. and Jia, Z. (2000). Crystallization and preliminary X-ray analysis of insect antifreeze protein from the beetle Tenebrio molitor. Acta Crystallographica Section D: Biological Crystallography. 56: 354 – 356.

18.    Kun, H. and Mastai, Y (2007). Activity of short segments of Type I antifreeze protein. Biopolymers 88: 807 – 814.

19.    Harding, M. M., Ward, L. G. and Haymet, A. D. (1999). Type I 'antifreeze' proteins. Structure-activity studies and mechanisms of ice growth inhibition. European Journal of Biochemistry 264: 653 – 665.

20.    Maupetit, J., Derreumaux, P. and Tuffery, P. (2009). PEP-FOLD: an online resource for de novo peptide structure prediction. Nucleic Acids Research 37: 498 – 503.

21.    Rahman, M. B., Zulkifli, M. F., Murad, A. M., Mahadi, N. M., Basri, M., Zahman, R. N. Z. and Salleh, A. B. (2008). Ab-Initio protein structure prediction of Leucosporidium antarcticum antifreeze proteins using I-TASSER simulations. 1st WSEAS International Conference on Biomedical Electronics and Biomedical Informatics, Rhodes, Greece.

22.    Fairley, K., Westman, B. J., Pham, L. H., Haymaet, A. D., Harding, M. M. and Mackay, J. P. (2002). Type I shorthorn sculpin antifreeze protein: Recombinant synthesis, solution conformation, and ice growth inhibition studies. Journal Biology Chemistry 277: 24073 – 24080.

23.    Hashim, H. N. F., Bharudin, I., Nguong, D. L. S., Bakar, F. D. A., Nathan, S., Rabu, A., Kawahara, H., Ilias, R. M., Najimudin, M., Mahadi, N. M. and Murad, A. M. A. (2013). Characterization of Afp1, an antifreeze protein from the psychrophilic yeast Glaciozyma antarctica PI12. Extremophiles 17: 63 – 73.

24.    Park, K. S., Jung, W. S., Kim, H. J. and Shin, S. Y. (2010). Determination of the minimal sequence required for antifreeze activity of type I antifreeze protein (AFP 37). Bulletin Korean Chemical Society 31: 3791 – 3793.

25.    Jia, Z. and Davies, P. L. (2002). Antifreeze proteins: An unusual receptor-ligand interaction. Trends in Biochemical Sciences 27: 101 – 106.

26.    Fan, Y., Liu, B., Wang, H., Wang, S. and Wang, J. (2002). Cloning of an antifreeze protein gene from carrot and its influence on cold tolerance in transgenic tobacco plants. Plant Cell Reports 21: 296 – 301.

 




Previous                    Content                    Next