Malaysian Journal of Analytical Sciences Vol 20 No 4 (2016): 697 - 703

DOI: http://dx.doi.org/10.17576/mjas-2016-2004-01

 

 

 

EFFECTS OF IRGAROL-1051 ON FATTY ACID PROFILE OF SOLITARY CORALS, Fungia fungites AFTER ACUTE EXPOSURE

 

(Kesan Irgarol-1051 terhadap Profil Asid Lemak Karang Solitari, Fungia fungites selepas Pendedahan Akut)

 

Zainudin Bachok1,2*,  Marinah Mohd Ariffin1,  Mohammed Ali Sheikh3, Noor Azhar Mohamed Shazili2,

Hassan Rashid Ali3

 

1School of Marine and Environmental Sciences

2Institute of Oceanography and Environment

Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia

3Tropical Research Centre for Oceanography, Environment and Natural Resources,

The State University of Zanzibar, P. O. Box 146, Zanzibar-Tanzania

 

*Corresponding author: zainudinb@umt.edu.my

 

 

Received: 14 March 2016; Accepted: 23 May 2016

 

 

Abstract

The short term exposure (4 days) was done to Fungia fungites using different concentration of Irgarol to establish the health effects of this species by measuring their fatty acid composition. It was done by comparing fatty acid composition of the fresh, control and exposed groups. The results indicated that, fresh and control samples of F. fungites were not significant different (p > 0.05) and dominated by Saturated Fatty Acids (SAFA) followed by Polyunsaturated Fatty Acids (PUFA) and the Monounsaturated Fatty Acids (MUFA). However, trends of other tested groups (20, 100 and 500 µg/L) were significant different (p < 0.05), with species suffered more as the dose of chemicals increased. For example, α-Linolenic acid (C18:3ω3) was not detected in F. fungites which exposed in this herbicide at 100 and 500 µg/L whereas C20:5ω3 was not detected in all exposed groups. These ecotoxicological data proved that Irgarol may affect the fatty acids composition of coral reef organisms even if exposed at the low levels of this biocide.

 

Keywords: Irgarol, booster biocides, fatty acids composition, Fungia fungites, coral reef organisms

 

Abstrak

Pendedahan jangka pendek (4 hari) telah dilakukan ke atas Fungia fungites menggunakan kepekatan Irgarol yang berbeza untuk membangunkan kesan kesihatan spesies tersebut dengan mengambilkira komposisi asid lemak mereka. Ianya telah dilakukan dengan membandingkan komposisi asid lemak bagi kumpulan segar, kawalan dan yang telah didedahkan. Keputusan menunjukkan bahawa, sampel segar dan kawalan F. fungites tidak berbeza secara bererti (p > 0.05) dan didominasi olah Asid Lemak Tepu (SAFA) diikuti oleh Asid Lemak Tidak Tepu Poli (PUFA) dan Asid Lemak Tidak Tepu Mono (MUFA). Walaubagaimanapun, corak bagi kumpulan lain yang diuji (20, 100 and 500 µg/L) adalah berbeza secara bererti (p < 0.05), dengan spesies mengalami sengsara yang lebih apabila dos bahan kima ditingkatkan. Misalnya asid lemak α-Linolenat (C18:3ω3) tidak dikesan dalam F. fungites yang terdedah dengan biosid perangsang ini pada 100 and 500 µg/L manakala C20:5ω3 tidak dikesan dalam semua kumpulan yang terdedah. Data ekotoksikologi ini membuktikan bahawa Irgarol berkemungkinan menjejaskan komposisi asid lemak organisma terumbu karang sungguhpun jika terdedah pada tahap yang rendah oleh biosid ini.

 

Kata kunci: Irgarol, biosid perangsang, komposisi asid lemak, Fungia fungites, organisma terumbu karang

 

References

1.       Gatidou, G., Thomaidis, N. S. and Zhou, J. L. (2007). Fate of Irgarol 1051, diuron and their main metabolites in two UK marine systems after restrictions in antifouling paints. Environment International, 33(1): 70 – 77.

2.       Ali, H. R., Arifin, M. M., Sheikh, M. A., Mohamed Shazili, N. A. and Bachok, Z. (2013). Occurrence and distribution of antifouling biocide Irgarol-1051 in coastal waters of Peninsular Malaysia. Marine Pollution Bulletin, 70(1-2): 253 – 257

3.       Gardinali, P. R., Plasencia, M., Mack, S. and Poppell, C. (2002). Occurrence of Irgarol 1051 in coastal waters from Biscayane Bay, Florida, USA. Marine Pollution Bulletin, 44: 781 – 788.

4.       Knutson, S., Downs, C. A. and Richmond, R. H. (2012). Concentrations of Irgarol in selected marinas of Oahu, Hawaii and effects on settlement of coral larval. Ecotoxicology, 21(1): 1 – 8.

5.       Jones, R. J. and Heyward, A. J. (2003). The effects of produced formation water (PFW) on coral and isolated symbiotic dinoflagellates of coral. Marine and Freshwater Research, 54(2): 153 – 162.

6.       Tolosa, I., Readman, J. W., Blaevoet, A., Ghilini, S., Bartocci, J. and Horvat, M. (1996). Contamination of Mediterranean (Cite d’Azur) coastal waters by organotins and Irgarol 1051 used in antifouling paints. Marine Pollution Bulletin, 32(4): 335 – 341.

7.       Owen, R., Knap, A., Toaspern, M. and Carbery, K. (2002). Inhibition of coral photosynthesis by the antifouling herbicide Irgarol 1051. Marine Pollution Bulletin, 44(7): 623 – 632.

8.       Okamura, H., Aoyama, I., Ono, Y. and Nishida, T. (2003). Antifouling herbicides in the coastal waters of western Japan. Marine Pollution Bulletin, 47: 59 – 67.

9.       Sapozhnikova, Y., Wirth, E., Schiff, K., Brown, J. and Fulton, M. (2007). Antifouling pesticides in the coastal waters of Southern California. Marine Pollution Bulletin, 54(12): 1972 – 1978.

10.    Sheikh, M. A., Higuchi, T., Fujimura, H., Imo, T. S., Miyagi, T. and Oomori, T. (2009). Contamination and impacts of new antifouling biocide Irgarol-1051 on subtropical coral reef waters. International Journal of Environmental Science and Technology, 6(3): 353 – 358.

11.    Biselli, S., Bester, K., Hühnerfuss, H. and Fent, K. (2000). Concentrations of the antifouling compound Irgarol 1051 and of organotins in water and sediments of German North and Baltic Sea marinas. Marine Pollution Bulletin, 40(3): 233 – 243.

12.    Boxall, A. B. A., Comber, S. D., Conrad, A. U., Howcroft, J. and Zaman, N. (2000). Inputs, monitoring and fate modelling of antifouling biocides in UK estuaries. Marine Pollution Bulletin, 40(11): 898 – 905.

13.    Kitada, Y., Kawahata, H., Suzuki, A. and Oomori, T. (2008). Distribution of pesticides and bisphenol a in sediments collected from rivers adjacent to coral reefs. Applied Catalysis B: Environmental, 82(3-4): 163 –168.

14.    Thomas, K. V., McHugh, M. and Waldock, M. (2002). Antifouling paint booster biocides in UK coastal waters: Inputs, occurrence and environmental fate. Science of the Total Environment, 293(1-3): 117 – 127.

15.    Basheer, C., Tan, K. S. and Lee, H. K. (2002). Organotin and Irgarol-1051 contamination in Singapore coastal waters. Marine Pollution Bulletin, 44(7): 697 – 703.

16.    Ali, H. R., Arifin, M. M., Sheikh, M. A., Mohamed Shazili, N. A. and Bachok, Z. (2015). Toxicological studies of Irgarol-1051 and its effects on fatty acid composition of Asian sea-bass, Lates calcarifer. Regional Studies in Marine Science, 2: 171 – 176.

17.    Abdulkadir, S. and Tsuchiya, M. (2008). One-step method for quantitative and qualitative analysis of fatty acids in marine animal samples. Journal of Experimental Marine Biology and Ecology, 354(1): 1– 8.

18.    Sathivel, S., Prinyawiwatkul, W., Grimm, C. C., King, J. M. and Lloyd, S. (2002). FA composition of crude oil recovered from catfish viscera. Journal of the American Oil Chemists’ Society, 79(10): 989 – 992.

19.    İbrahim Haliloǧlu, H., Bayır, A., Necdet Sirkecioǧlu, A., Mevlüt Aras, N. and Atamanalp, M. (2004). Comparison of fatty acid composition in some tissues of rainbow trout (Oncorhynchus mykiss) living in seawater and freshwater. Food Chemistry, 86(1): 55 – 59.

20.    Jabeen, F. and Chaudhry, A. S. (2011). Chemical compositions and fatty acid profiles of three freshwater fish species. Food Chemistry, 125(3): 991 – 996.

21.    Ho, B. T. and Paul, D. R. (2009). Fatty acid profile of Tra Catfish (Pangasius hypophthalmus) compared to Atlantic Salmon (Salmo solar) and Asian Seabass (Lates calcarifer). International Food Research Journal, 16(4): 501 – 506.

22.    Steiner-Asiedu, M., Julshamn, K. and Lie, Ø. (1991). Effect of local processing methods (cooking, frying and smoking) on three fish species from Ghana: Part I. Proximate composition, fatty acids, minerals, trace elements and vitamins. Food Chemistry, 40(3): 309 – 321.

23.    Nettleton, J. A., Allen, W. H., Klatt, L. V., Ratnayake, W. M. N. and Ackman, R. G. (1990). Nutrients and chemical residues in oneto twopound Mississippi farmraised channel catfish (Ictalurus punctatus).Journal of Food Science, 55(4): 954 – 958.

24.    Ackman, R. G. (1994). Seafood lipids. In Shahidi, F. and Botta, J. R. (Eds). Seafoods: Chemistry, Processing, Technology and Quality. Glasgow: Chapman and Hall p. 34 – 48.

25.    Steffens, W. (1997). Effects of variation in essential fatty acids in fish feeds on nutritive value of freshwater fish for humans. Aquaculture, 151: 97 – 119.

26.    Henderson, R. J. (1996). Fatty acid metabolism in freshwater fish with particular reference to polyunsaturated fatty acids. Archives of Animal Nutrition, 49(1): 5 – 22.

 




Previous                    Content                    Next