Malaysian Journal of Analytical Sciences Vol 20 No 4 (2016): 704 - 712

DOI: http://dx.doi.org/10.17576/mjas-2016-2004-02

 

 

 

A FLUORESCENCE PHOSPHATE SENSOR BASED ON POLY(GLYCIDYL METHACRYLATE) MICROSPHERES WITH ALUMINIUM-MORIN

 

(Sensor Fosfat Berpendarfluor Berasaskan Mikrosfera Poli(Glisidil Metakrilat) dengan Aluminium-Morin)

 

Amalina Ahmad1, Norhadisah Mohd Zaini1, Normazida Rozi1, Nurul Huda Abd Karim1, Siti Aishah Hasbullah1, Lee Yook Heng1, Sharina Abu Hanifah1,2*

 

1School of Chemical Sciences and Food Technology

2Center for Water Research and Analysis

Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: sharina@ukm.edu.my

 

 

Received: 8 December 2015; Accepted: 11 March 2016

 

 

Abstract

The performance of new phosphate sensor was investigated using fluorescence spectrometer in the form of immobilized Al-morin on poly(glycidyl methacrylate) (pGMA) microspheres. pGMA microspheres that were synthesized by using suspension photopolymerization exhibited spherical-shaped morphology with diameters from 1.5 to 5.3 μm. The studies were carried out at pH 5 and the ratio of aluminium (III) chloride hexahydrate to morin was 3:1 (v/v). At pH 5, H2PO4- was measured at 548 nm emission wavelength. The relative fluorescence intensity was inversely proportional to H2PO4- concentrations. The linear range was observed between 6.6 – 58.8 µmol/L with detection limit (LOD) of 0.7 µmol/L. Ion interference study demonstrated that Al-morin was highly selective towards H2PO4-.

 

Keywords: phosphate sensor, polymer microspheres, aluminium-morin, fluorescence

 

Abstrak

Prestasi sensor fosfat baru telah dikaji dengan menggunakan spektrometer pendarfluor dalam bentuk  Al-morin terpegun pada mikrosfera poli(glisidil metakrilat) (pGMA). Mikrosfera pGMA yang disintesis dengan menggunakan pemfotopolimeran ampaian mempamerkan morfologi berbentuk sfera dengan diameter 1.5 hingga 5.3 µm. Kajian telah dijalankan pada pH 5 dan nisbah aluminium (III) klorida heksahidrat kepada morin adalah 3: 1 (v/v). Pada pH 5, H2PO4- diukur pada gelombang pancaran 548 nm. Keamatan pendarfluor relatif adalah berkadar songsang dengan kepekatan H2PO4- Julat linear diperhatikan antara 6.6 – 58.8 μmol/L dengan had pengesanan (LOD) pada 0.7 μmol/L. Kajian gangguan ion menunjukkan  Al-morin adalah sangat selektif kepada H2PO4-.

 

Kata kunci: sensor fosfat, polimer mikrosfrera, aluminium-morin, pendafluor

 

References

1.       Kramer, M. (2008). Protein engineering of pyruvate oxidase from Lactobacillus plantarum for application in biosensors. Thesis Diss. Naturwissenschaften, Eidgenössische Technische Hochschule ETH Zürich, Nr. 17765.

2.       Carpenter, S. R. (2005). Eutrophication of aquatic ecosystems: biostability and soil phosphorus. Proceedings of the National Academy of Sciences of the United States of America, 102(29): 10002 – 10005.

3.       Lawal, A. T. and Adeloju, S. B. (2013). Progress and recent advances in phosphate sensors: A review. Talanta, 114: 191 – 203.

4.       Kumar, R. (2009). Phosphate sensing. Current Opinion in Nephrology and Hypertension, 18(4): 281 – 284.

5.       Slatopolsky, E. (2011). The intact nephron hypothesis: the concept and its implications for phosphate management in CKD-related mineral and bone disorder. Kidney International, 79: 3 – 8.

6.       Engblom, S. O. (1998). The phosphate sensor. Biosensors and Bioelectronics, 13(9): 981 – 994.

7.       Kawasaki, H., Sato, K., Ogawa, J., Hasegawa, Y. and Yuki, H. (1989). Determination of inorganic phosphate by flow injection method with immobilized enzymes and chemiluminescence detection. Analytical Biochemistry, 182(2): 366 – 370.

8.       Ahuja, D. and Parande, D. (2012). Optical sensors and their applications. Journal of Scientific Research and Reviews, 1(5): 60 – 68.

9.       Noh, J. Y., Hwang, I. H., Kim, H., Song, E. J., Kim, K. B. and Kim, C. (2013). Salicylimine-based colorimetric and fluorescent chemosensor for selective detection of cyanide in aqueous buffer. Bulletin Korean Chemical Society, 34(7): 1985 – 1989.

10.    Willard, H. H. and Horton, C. A. (1952). Fluorometric determinations of traces of fluoride. Analytical Chemistry, 24(5): 862 – 865.

11.    Xie, Z. H., Lin, X. C. and Chen, G. N. (2003). Novel phosphate-sensitive fluorescent composite matrix. Chemical Research Chinese Universities, 19(2): 201 – 205.

12.    Lin, X., Wu, X., Xie, Z. and Wong, K. Y. (2006). PVC matrix membrane sensor for fluorescent determination of phosphate. Talanta, 70(1): 32 – 36.

13.    Ahmad, A., Hanifah, S. A., Hasbullah, S. A., Suhud, K., Zaini, N. M. and Heng, L. Y. (2014). Phosphate sensor based on immobilized aluminium-morin in poly(glycidyl methacrylate) microspheres. AIP Conference Proceedings, 1614(1): 486 – 491.

14.    Denizli, A., Garipcan, B., Karabakan, A. and Senoz, H. 2005. Synthesis and characterization of poly(hyroxyethyl methacrylate-N-methacryloyl-(L)-glumatic acid) copolymer beads for removal of leads ions. Materials Sciences and Engineering Journal C, 25(4): 448 – 454.

15.    Peper, S., Tsagkatakis, I. and Bakker, E. 2001. Cross-linked dodecyl acrylate microspheres: novel matrices for plasticizer-free optical ion sensing. Analytica Chimica Acta 442(1): 25 – 33.

16.    Xu, C., Wygladacz, K., Qin, Y., Retter, R., Bell, M. and Bakker, E. 2005. Microsphere optical ion sensors based on doped silica gel templates. Analytica Chimica Acta 537(1): 135 – 143.

17.    Mohr, G. J. and Wolfbeis, O. S. 1995. Optical sensing of anions via polarity-sensitive dyes: a bulk sensor membrane for nitrate. Analytica Chimica Acta 316(1995) 239 – 246.

18.    Chandra, S., Raizada S. and Sharma, S. 2012. Highly selective monohydrogen phosphate anion sensor for [CrL](NO3)3. Journal of Chemical and Pharmaceutical Research 4(8): 3769 3777.

19.    Mulon, J. B., Destandau, É., Alain, V. and Bardez, É. 2005. How can aluminium(III) generate fluorescence? Journal of Inorganic Biochemistry 99(2005): 1749 1755.

20.    Ulianas, A., Heng, L. Y., Hanifah, S. A. and Ling, T. L. (2012). An electrochemical DNA microbiosensor based on succinimide-modified acrylic microspheres. Sensors 12: 5445 – 5460.

21.    Williams, N. J., Gan, W., Reibenspies, J. H. and Hancock, R. D. (2009). Possible steric control of the relative strength of chelation enhanced fluorescence for zinc(II) compared to cadmium(II): Metal ion complexing properties of tris(2-quinolylmethyl)amine, a crystallographic, UV-visible, and fluorometric study. Inorganic Chemistry, 48: 1407 – 1415.

22.    De Silva, A. P., Gunaratne, H. N., Gunnlaugsson, T., Huxley, A. J., McCoy, C. P., Rademacher, J. T. and Rice, T. E. (1997). Signaling recognition events with fluorescent sensors and switches. Chemistry Reviews, 97(5): 1515 – 1566.

23.    Kaur, S., Hwang, H., Lee, J. T. and Lee, C. H. (2013). Displacement-based, chromogenic calix [4] pyrrole-indicator complex for selective sensing of pyrophosphate anion. Tetrahedron Letters, 54(29): 3744 3747.

24.    Neri, T. S., Carvalho, D. C., Alves, V. N. and Coelho, N. M. (2015). Noteworthy method for direct determination of SbIII and total inorganic antimony in natural waters. Journal of the Brazilian Chemical Society, 26(5), 985 – 991.

25.    Zhang, Y., Hu, Y., Wilson, G. S., Moatti-Sirat, D., Poitout, V., and Reach, G. (1994). Elimination of the acetaminophen interference in an implantable glucose sensor. Analytical Chemistry, 66(7): 1183 – 1188.

26.    Edwards, H. A. (1982). Ion concentration and activity in the haemolymph of Aedes aegypti larvae. Journal of Experimental Biology, 101(1): 143 – 151.

 




Previous                    Content                    Next