Malaysian Journal of Analytical Sciences Vol 20 No 4 (2016): 829 - 837

DOI: http://dx.doi.org/10.17576/mjas-2016-2004-16

 

 

 

DETERMINATION OF OPTIMUM CONDITION OF LEUCINE CONTENT IN BEEF PROTEIN HYDROLYSATE USING RESPONSE SURFACE METHODOLOGY

 

(Penentuan Keadaan Optimum bagi Kandungan Leusina di dalam Protein Hidrolisat Daging Menggunakan Kaedah Gerak Balas Permukaan)

 

Siti Roha Ab Mutalib, Zainal Samicho*, Noriham Abdullah

 

Programme of Food Science and Technology,

Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: zainal147@salam.uitm.edu.my

 

 

Received: 24 February 2015; Accepted: 27 October 2015

 

 

Abstract

The aim of this study is to determine the optimum condition of leucine content in beef hydrolysate.  Beef hydrolysate was prepared by enzymatic hydrolysis using bromelain enzyme produced from pineapple peel. Parameter conditions such as concentration of bromelain, hydrolysis temperature and hydrolysis time were assessed to obtain the optimum leucine content of beef hydrolysate according to experimental design which was recommended by response surface methodology (RSM). Leucine content in beef hydrolysate was determined using AccQ.Tag amino acid analysis method using high performance liquid chromatography (HPLC). The condition of optimum leucine content was at bromelain concentration of 1.38 %, hydrolysis temperature of 42.5 °C and hydrolysis time of 31.59 hours with the predicted leucine content of 26.57 %. The optimum condition was verified with the leucine value obtained was 26.25 %. Since there was no significant difference (p > 0.05) between the predicted and verified leucine values, thus it indicates that the predicted optimum condition by RSM can be accepted to predict the optimum leucine content in beef hydrolysate.

 

Keywords:  leucine, enzymatic hydrolysis, bromelain, response surface methodology

 

Abstrak

Matlamat kajian ini adalah untuk menentukan keadaan optimum kandungan leusina di dalam hidrolisat daging lembu. Hidrolisat daging lembu telah disediakan secara hidrolisis enzim menggunakan enzim bromelin yang dihasilkan daripada kulit nanas. Keadaan parameter seperti kepekatan bromelin, suhu hidrolisis dan masa hidrolisis telah dinilai untuk mendapatkan kandungan leusina yang optimum dari hidrolisat daging lembu mengikut reka bentuk eksperimen yang disyorkan oleh kaedah gerak balas permukaan (RSM). Kandungan leusina di dalam hidrolisat daging lembu telah ditentukan dengan menggunakan  kaedah analisis AccQ.Tag asid amino menggunakan kromatografi cecair prestasi tinggi (HPLC). Keadaan optimum kandungan leusina didapati pada kepekatan bromelin 1.38 %, suhu hidrolisis  42.50 ºC dan masa hidrolisis  31.59 jam dengan kandungan leusina yang diramalkan adalah 26.57 %. Keadaan optimum telah disahkan di mana nilai leusina diperolehi adalah 26.25 %. Oleh kerana tiada perbezaan yang signifikan (p > 0.05) antara nilai leusina yang diramalkan dan disahkan, maka ia menunjukkan bahawa keadaan optimum yang diramalkan oleh RSM boleh diterima dan digunakan untuk meramalkan kandungan leusina yang optimum dalam hidrolisat daging lembu.

 

Kata kunci:  leusina, hydrolisis enzim, bromelin, kaedah gerak balas permukaan

 

References

1.       Cordts, A., Nitzko, S. and Spiller, A. (2014). Consumer response to negative information on meat consumption in Germany. International Food and Agribusiness Management Review, 17: 83 – 106.

2.       Scollan, N., Hocquette, J. F., Nuernberg, K. and Dannenberger, D. (2006). Innovation in beef production systems that enhance the nutritional and health value of beef lipids and their relationship with meat quality. Meat Science, 70: 17 – 33.

3.       Hollo, G., Nuernberg, K. and Hollo, I. (2007). Effect of feeding on the composition of longissmus muscle of hungarian grey and the holsteh friesian bulls. Arch Tierz Dummersturf, 50(6): 575 – 586.

4.       Bjoern, A. M., Schrader, H. and Ritter, D. R. (2010). Selective amino acid deficiency in patients with impaired glucose tolerance and type 2 diabetes. Regulatory Peptide, 160: 75 – 80.

5.       Murna, M., Novi, S. and Fahrizal, Z. (2012). Production of protein hydrolysates from fish byproduct prepared by enzymatic hydrolysis. International Journal of the Bioflux Society, 5(1): 36 – 39.

6.       Haslaniza, H., Maskat, M. Y., Wan Aida, W. M. and Mamot, S. (2010). The effects of enzyme concentration, temperature and incubation time on nitrogen content and degree of hydrolysis of protein precipitate from cockle (Anadara granosa) meat wash water. International Food Research Journal, 17: 147 – 152.

7.       Apiwatanapiwat, W., Vaithanomsat, P., Somkliang, P. and Malapant, T. (2009). Optimization of protein hydrolysate production process from Jatropha curcas cake. International Journal of Chemical and Biological Engineering 2(3): 161 – 164.

8.       Fernandes, H. P., Cesar, C. L. and Barjas-Castro, M. D. L. (2011). Electrical properties of the red blood cell membrane and immunohematological investigation. Revista Brasileira de Hematologia e Hemoterapia, 33(4): 297 – 301.

9.       Bhattacharyya, B. K. (2008). Bromelain: An overview. Natural Product Radiance, 4: 359 – 363.

10.    Boyer, P. D. (1997). The enzymes: Hydrolysis other C-N bonds, phosphate ester. The enzymes (3 ed.): Academic press.

11.    Wangtueai, S. and Noomhorm, A. (2009). Processing optimization and characterization of gelatin from lizardfish (Saurida spp.) scales. LWT – Food Science and Technology, 42: 825 – 834.

12.    Gomes, N., Teixeira, J. A. and Belo, I. (2011). Empirical modelling as an experimental approach to optimize lactone production. Catalysis Science & Technology, 1: 86 – 92.

13.    Sudamalla, P., Saravanan, P. and Matheswaran, M. (2012). Optimisation of operating parameters using response surface methodology for adsorption of crystal violet by activated carbon prepared from mango kernel. Sustainable Environment Research, 22: 1 – 7.

14.    Siti Nadiah, S., Noorlaila, A., Mohd Zahid, A., Norziah, M. H. and Normah, I. (2013). Optimization of hydrocolloids and maltodextrin addition on roselle-based fruit leather using two-level full factorial design. International Journal of Bioscience, Biochemistry and Bioinformatics, 3(4): 387 – 391.

15.    Patel, S., Kothari, D. and Goyal, A. (2011). Enhancement of dextransucrase activity of Pediococcus pentosaceus SPAm1 by response surface methodology. Indian Journal of Biotechnology, 10: 346 – 351.

16.    Zaibunnisa, A. H., Norashikin, S., Mamot, S. and Osman, H. (2009). An experimental design approach for the extraction of volatile compounds from turmeric leaves (Curcuma domestica) using pressurized liquid extraction (PLE). LWT Food Science Technology, 42: 233 – 238.

17.    Panwal, J. H., Viruthagiri, T. and Baskar, G. (2011). Statistical modeling and optimization of enzymatic milk fat splitting by soybean lecithin using response surface methodology. International Journal of Nutrition and Metabolism, 3: 50 – 57.

18.    Datta, D. and Kumar, S. (2012). Modeling and optimisation of recovery process of glycolic acid using reactive extraction. International Journal of Chemical Engineering and Applications, 3: 141 – 146.

19.    Mannan, S., Fakhru’l-Razi, A. and Md Zahangir, A. (2007). Optimization of process parameters for the bioconversion of activated sludge by Penicillium corylophilum, using response surface methodology. Journal of Environmental Sciences, 19: 23 – 28.

20.    Harckova, M., Rusnakova, M. and Zemonovic, J. (2002). Enzymatic hydrolysis of defatted soy flour by three different proetease and their effect on the functional properties of resulting protein hydrolysates. Czech Journal Food Science, 20(1): 7 – 14.

21.    Stein, I. A., Svein, J. H., Vincent, G. H., and Eijsinka. (2005). Enzymatic hydrolysis of Atlantic cod (Gadus morhua L.) viscera. Process Biochemistry, 40: 1957 – 1966.

 

 




Previous                    Content                    Next