Malaysian Journal of Analytical Sciences Vol 20 No 4 (2016): 838 - 843

DOI: http://dx.doi.org/10.17576/mjas-2016-2004-17

 

 

 

CHARACTERISATION OF CATFISH (Clarias batrachus) OIL: β-CYCLODEXTRIN INCLUSION COMPLEX

 

(Pencirian Kompleks Rangkuman Minyak Ikan Keli (Clarias batrachus): β-siklodekstrin)

Zaibunnisa Abdul Haiyee1*, Nor Izzatul Adyani Yahya1, Norizzah Abd Rashid1, Dzulkifly Mat Hashim2

 

1Food Technology Programme, Faculty of Applied Sciences,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Halal Products Research Institute,

Universiti Putra Malaysia, Putra Infoport, 43400 UPM Serdang, Selangor, Malaysia

 

*Corresponding author: nisha@salam.uitm.edu.my

 

 

Received: 24 February 2015; Accepted: 27 October 2015

 

 

Abstract

Catfish is a cheap source of essential omega-3 fatty acids especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Catfish oil was extracted and clean-up using pressurised liquid extraction (PLE) from the viscera of catfish (Clarias batrachus). However, the characteristics of catfish oils are sticky, strong fishy odour and can easily be oxidised with short shelf-life. In this study, catfish oil was converted into powder by formation of inclusion complex with β–cyclodextrin. Inclusion complex was prepared by using co-precipitation and kneading methods and compared with physical mixture. The inclusion complex formed were characterised by using field emission scanning electron microscopy (FESEM), differential scanning calorimeter (DSC) and fourier transform infrared spectroscopy (FTIR). FESEM images revealed that inclusion complex using co-precipitation and kneading methods has smaller in crystal sizes and appeared as different morphology compared to physical mixture. DSC proved that co-precipitation method was able to form new solid phase due to shifting of melting point to higher temperature (145.22 °C). FTIR supported the result by proving strengthening of carbonyl group (C=O). Therefore, co-precipitation method was able to successfully produce inclusion complex of catfish oil, β-cyclodextrin.

 

Keywords:  catfish oil, β-cyclodextrin, co-precipitation, kneading, physical mixture

 

Abstrak

Ikan keli merupakan sumber murah yang mengandungi asid lemak omega-3 terutama asid eikosapentaenoik (EPA) dan asid dokosaheksaenoik (DHA). Minyak ikan keli telah diekstrak dan disulingkan dengan menggunakan pengekstrakan cecair tekanan tinggi (PLE) daripada visera ikan keli (Clarias batrachus). Walau bagaimanapun, ciri – ciri minyak ikan keli adalah melekit, bau hanyir yang kuat, mudah teroksida dengan mempunyai jangka hayat yang terhad. Dalam kajian ini, minyak ikan keli telah ditukarkan menjadi serbuk melalui pembentukan kompleks rangkuman dengan β-siklodekstrin (BCD). Kompleks rangkuman telah dihasilkan dengan menggunakan teknik ko-pemendakan dan penggulian serta dibandingkan dengan campuran fizikal. Kompleks rangkuman telah dicirikan dengan menggunakan mikroskop elektron imbasan medan (FESEM), kalorimeter imbasan kebezaan (DSC) dan spektrofotometer infra merah transformasi fourier (FTIR). Hasil kajian daripada imej FESEM menunjukkan bahawa pembentukan kompleks rangkuman  menggunakan teknik ko-pemendakan dan penggulian mempunyai saiz kristal yang kecil dan muncul  sebagai morfologi yang berbeza dibandingkan dengan campuran fizikal. DSC membuktikan ko-pemendakan  mampu  menghasilkan fasa baru kerana takat pencairan berubah dari yang asal ke suhu yang lebih tinggi (145.22 ºC). FTIR mendokong keputusan melalui bukti penegangan kumpulan karbonil dan C=O telah digunakan untuk rangkuman. Oleh itu, kaedah ko-pemendakan membuktikan kaedah yang paling sesuai untuk merangkum minyak ikan keli menggunakan β-siklodekstrin.

 

Kata kunci:  minyak ikan keli, β-siklodekstrin, ko-pemendakan, penggulian, campuran fizikal

 

References

1.       Nayak, S., Solanki, H. U. and Dwivedi, R. M. (2003). Utilization of IRS P4 ocean colour data for potential fishing zone- a cost benefit analysis. Indian Journal of Marine Sciences, 32 (3): 244 − 248.

2.       Malaysia Department of Fisheries (2004). Perangkaan Perikanan Tahunan 2004. Access from http://www.dof.gov.my/index.php/pages/view/111

3.       Tacon, A. G. J. and Metian, M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture, 285: 146 − 158.

4.       Simopoulus, A. P., Leaf, A. and Salem, N. (1999). Essentiality of and recommended dietary intakes for omega-6 and omega-3 fatty acids. Annals Nutrition and Metabolism, 43: 127 – 131.

5.       Haraldsson, G .G., Kristinsson, B., Sigurdardottir, R., Gudmundsson, G.G. and Breivik, H. (1997). The preparation of concentrates of eicosapentaenoic acid and docosahexaenoic acid by lipase-catalyzed transesterification of fish oil with ethanol. Journal of the American Oil Chemist’s Society, 74: 1419 − 1424.

6.       Choi, M. J., Ruktanonchai, U., Min, S. G., Chun, J. Y. and Soottitantawat, A. (2010). Physical characteristics of fish oil encapsulated by β-cyclodextrin using an aggregation method or polycaprolactone using an emulsion–diffusion method. Food Chemistry, 119 (4): 1694 − 1703.

7.       Zhang, A., Liu, W., Wang L. and Wen, Y. (2005). Characterization of Inclusion Complexation between Fenoxaprop-p-ethyl and Cyclodextrin. Journal of Agricultural and Food Chemistry, 53 (18): 7193 – 7197.

8.       Waleczek, K. J., Marques, C., Hempel, B. and Schmidt, P. C. (2003). Phase solubility studies of pure (2)-a-bisabolol and camomile essential oil with b-cyclodextrin. European Journal of Pharmaceutics and Biopharmaceutics, 55: 247 – 251.

9.       Zaibunnisa, A. H., Siti Rashima, R. and Nur Ain, A.H. (2011). Stabilization of curcumin with γ-cyclodextrin: phase solubility study and its characterisation. 2nd International Conference on Biotechnology and Food Science IPCBEE, 7: 9 − 13.

10.    William III, R. O., Mahaguna, V. and Sriwongjany, M. (1998). Characterization of an inclusion complex of cholesterol with hydroxyproopyl-β-cyclodextrins. European Journal of Pharmaceutics and Biopharmaceutics, 46: 355 − 360.

11.    Reddy, M. N., Rehana, T., Ramakrishna, S., Chowdary, K. P. R. and Diwan, P. V. (2004). β-cyclodextrin complexes of celecoxib: molecular modelling, characterization, and dissolution studies. AAPS Pharmaceutical Sciences, 6(1): 1 − 9.

12.    Zaibunnisa, A. H., Norashikin, S., Mamot, S., Rosli, M. I., Wan A, W. M. and Osman, H. (2009). Characterization of cyclodextrin complexes with turmeric oleoresin. Food Chemistry. 114: 459 − 465.

 




Previous                    Content                    Next