Malaysian Journal of Analytical Sciences Vol 20 No 4 (2016): 892 - 900

DOI: http://dx.doi.org/10.17576/mjas-2016-2004-25

 

 

 

TiO2 DOPED WITH Fe2O3 FOR PHOTOELECTROCHEMICAL WATER SPLITTING ELECTRODE: EXPERIMENTAL AND DENSITY FUNCTIONAL THEORY STUDY

 

(TiO2 Di Dop Bersama Fe2O3 untuk Elektrod Pembelahan Molekul Air Secara Fotoelektrokimia: Eksperimen dan Kajian Teori Fungsi Ketumpatan)

 

Khuzaimah Arifin1*, Hasmida Abdul Kadir1,3, Lorna Jeffery Minggu1, Wan Ramli Wan Daud1,2 ,

Mohammad B. Kassim1,3

 

1Fuel Cell Institute

2Department of Chemical and Process Engineering

3School of Chemical Sciences and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: khuzaim@ukm.edu.my

 

 

Received: 5 February 2016; Accepted: 22 April 2016

 

 

Abstract

Various modifications of the titanium dioxide thin films have been done in fulfilling the photoelectrode requirements for photoelectrochemical water splitting reaction. In this study, surface passivation of TiO2 by hematite-Fe2O3 was reported. Electrodeposition technique was used to deposit the Fe2O3 onto the TiO2/FTO film with variation of time. X-ray diffraction (XRD), Scanning Electron Microscope (SEM) and UV-Vis spectroscopic analyses were used to characterize the electrode. Plane-wave-based pseudopotential density functional theory (DFT) calculations were used to analyze the electronic structure and charge potential at the surface of the electrode. The photocurrent measurement showed that current density of TiO2/Fe2O3 electrode was higher than the TiO2/FTO under the same illumination intensity of 100 mWcm-2. The highest current density was produced by 5 minutes electrodeposition of Fe2O3, which also shifted the absorption to visible region at the threshold wavelength of 518 nm.

 

Keywords :  titanium dioxide, iron(III) oxide, passivation layer, band gap

 

Abstrak

Pelbagai pengubahsuaian titanium dioksida filem nipis telah dilakukan untuk memenuhi keperluan fotoelektrod bagi tindak balas fotoelektrokimia pembelahan molekul air. Dalam kajian ini, dilaporkan pempasifan permukaan TiO2 dengan bijih besi-Fe2O3. Teknik pengelektroenapan digunakan untuk mendepositkan Fe2O3 ke TiO2/FTO filem dengan pelbagai  masa pengelektroenapan. Analisis XRD, SEM dan UV-Vis spektroskopi telah digunakan untuk mencirikan elektrod. pengiraan teori fungsi ketumpatan (DFT) berasaskan planar gelombang pseudopotential telah digunakan untuk menganalisis struktur elektronik dan potensi caj di permukaan elektrod. Pengukuran arusfoto menunjukkan bahawa ketumpatan arus TiO2/Fe2O3 elektrod adalah lebih tinggi daripada  TiO2/FTO bawah  keamatan  pencahayaan  yang sama, 100 mWcm-2.  Ketumpatan  semasa  tertinggi  dihasilkan  oleh 5 minit pengelektroenapan Fe2O3, yang mana penyerapan beralih ke kawasan yang boleh dilihat pada panjang gelombang ambang 518 nm.

 

Kata kunci:  titanium dioksida, ferum (III) oksida, lapisan pasif, sela jalur

 

References

1.       Arifin, K., Majlan, E.H., Daud, W. R.W. and Kassim, M.B. (2012). Bimetallic complexes in artificial photosynthesis for hydrogen production: A review. International Journal of Hydrogen Energy, 37: 3066 3087.

2.       Currao, A. (2007) Photoelectrochemical water splitting. Chimia, 61: 815 – 819.

3.       Liu, R., Zheng, Z., Spurgeon, J. and Yang, X. (2014). Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy and Environmental Science, 7: 2504 2517.

4.       Minggu, L. J., Daud, W. R.W. and Kassim, M. B. (2010). An overview of photocells and photoreactors for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 3(35): 5233 5244.

5.       Arifin, K., Daud, W. R.W. and Kassim, M.B. (2013). Optical and photoelectrochemical properties of a TiO2 thin film doped with a ruthenium-tungsten bimetallic complex. Ceramics International, 39: 2699   2707.

6.       Fujishima, A., Zhang, X. and Tryk, D.A. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science  Reports, 63: 515 582.

7.       Arifin, K., Daud, W. R.W. and Kassim, M.B. (2014). A novel ruthenium-tungsten bimetallic complex dye-sensitizer for photoelectrochemical cells application. Sains Malaysiana, 43(1): 95 101.

8.       Ni, M., Leung, M. K. H., Leung, D.Y.C. and Sumathy, K. (2007). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Review, 11: 401 425.

9.       Lin, F. and Boettcher, S.W. (2013). Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nature Materials13: 81 – 86.

10.    Cao, C., Hu, C., Shen, W., Wang, S., Tian, Y. and Wang, X. (2012). Synthesis and characterization of TiO2/CdS core–shell nanorod arrays and their photoelectrochemical property. Journal of Alloys and Compounds 523: 139 145.

11.    Kim, B-R., Oh, H-J., Yun, K-S., Jung, S-C., Kang, W. and Kim, S-J. (2013). Effect of TiO2 supporting layer on Fe2O3 photoanode for efficientwater splitting. Progress in Organic Coatings, 76:1869 – 1873

12.    Fitzmorris, R. C. and Zhang, J. Z. (2015). Recent advances in metal oxide-based photoelectrochemical hydrogen production. In: Andrews D.L., editors. Photonics, Volume 2: Nanophotonic Structures and Materials, Canada, John Willey & Son. pp 346 358.

13.    Smith, W.,  Wolcott, A.,  Fitzmorris, R. C., Zhang, J. Z. and Zhao, Y. (2011). Quasi-core-shell TiO2/WO3 and WO3/TiO2 nanorod arrays fabricated by glancing angle deposition for solar water splitting. Journal of Material Chemistry, 21: 10792 10800.

14.    Minggu, L. J., Ng, K. H., Kadir, H. A. and Kassim, M. B. (2014). Bilayer n-WO3/p-Cu2O hotoelectrode with photocurrent enhancement in aqueous electrolyte photoelectrochemical reaction. Ceramics International, 40: 16015 16021.

15.    Wang, Q., Yang, X., Chi, L. and Cui, M. (2013). Photoelectrochemical performance of CdTe sensitized TiO2 nanotube array photoelectrodes. Electrochimica Acta, 91: 330 336.

16.    Zhong, M., Shi, J., Xiong, F., Zhang, W. and Li, C. (2012). Enhancement of photoelectrochemical activity of nanocrystalline CdS photoanode by surface modification with TiO2 for hydrogen production and electricity generation. Solar Energy, 86: 756 763.

17.    Hang, N. K., Minggu, L.J. and Kassim, M.B. (2013). Gallium-doped tungsten trioxide thin film photoelectrodes for photoelectrochemical water splitting.  International Journal of Hydrogen Energy, 38: 9585 9591.

18.    Vlasa, A., Varvara, S., Pop, A., Bulea, C. and Muresan, L.M. (2010). Electrodeposited Zn–TiO2 nanocomposite coatings and their corrosion behavior. Journal of Applied Electrochemistry, 40: 1519 –1527.

19.    Zanganeh, S., Torabi, M., Kajbafvala, A., Zanganeh, N., Bayati, M.R., Molaei, R., Zangar, H.R. and Sadrnezhaad, S. K. (2010). CVD fabrication of carbon nanotubes on electrodeposited flower-like Fe nanostructures. Journal of Alloys & Compounds, 507: 494 497.

20.    Khan, M. A., Woo, S. I. and Yang, O-B. (2008). Hydrothermally stabilized Fe(III) doped titania active under visible light for water splitting reaction. International Journal of Hydrogen Energy, 33: 5345 5351.

 




Previous                    Content                    Next