Malaysian Journal of Analytical Sciences Vol 20 No 4 (2016): 901 - 912

DOI: http://dx.doi.org/10.17576/mjas-2016-2004-26

 

 

 

STUDY OF HYDROGEN CONSUMPTION BY CONTROL SYSTEM IN PROTON EXCHANGE MEMBRANE FUEL CELL

 

(Kajian Penggunaan Hidrogen oleh Sistem Kawalan dalam Sel Bahan Api Membran Penukaran Proton)

 

Ros Emilia Rosli1, Edy Herianto Majlan1*, Siti Afiqah Abd. Hamid1, Wan Ramli Wan Daud1, Ramizi Mohamed2, Teuku Husaini1, Dedi Rohendi3

 

1Fuel Cell Institute

2Department of Electrical and System Engineering, Faculty of Engineering & Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Department of Chemistry, Faculty of Mathematics and Sciences,

Sriwijaya University, 30662 Inderalaya, Palembang, Indonesia

 

*Corresponding author: edy@ukm.edu.my

 

 

Received: 5 February 2016; Accepted: 22 April 2016

 

 

Abstract

Efficient operation results from a proper control strategy. In the operation and performance of a Proton Exchange Membrane Fuel Cell (PEMFC), the hydrogen gas flow rate is one of the most essential control parameter in addition to operating pressure, water management, temperature and humidity. This is because of the high cost and amount of energy are required to produce the purity hydrogen gas. In this paper, a Proportional Integral Derivative (PID) feedback control system is used to control the hydrogen flow rate. A strategy is adapted to balance the hydrogen use based on the loading requirements, especially during start-ups and sudden power demands. This system is implemented using National Instrument (NI) devices powered by the LabVIEW program. This is due to its simplicity and customization flexibility for measuring, processing and recording data. Designed structure allows the real-time implementation of a robust control law that is able to address the related nonlinearities and uncertainties without incurring a heavy computational load for the controller algorithm. While it facilitating a fast sampling rate according to the needs of the power system. Test results from the controller show that the new fuel control system provides good performance by reducing the amount of wasted hydrogen gas compared with that of the previous open loop system by 30 % to over 80 % saved by the varied load. This improvement is beneficial for any PEMFC that experiences fluctuating power demand, especially for vehicle applications.

 

Keywords:  PEM fuel cell, proportional integral derivative, reactant controller, LabVIEW, national instrument

 

Abstrak

Operasi yang cekap terhasil dari strategi kawalan yang baik. Dalam operasi dan prestasi Fuel Cell Membran Penukaran Proton (PEMFC), kadar aliran gas hidrogen adalah salah satu parameter kawalan yang paling penting selain dari tekanan operasi, pengurusan air, suhu dan kelembapan. Ini kerana kos yang tinggi dan jumlah tenaga dikehendaki untuk menghasilkan gas hidrogen berketulenan tinggi. Dalam kertas kerja ini, sistem kawalan Perkadaran, Kamiran dan Perbezaan (PID) suap balik digunakan untuk mengawal kadar aliran hidrogen. Strategi disesuaikan untuk mengimbangi penggunaan hidrogen berdasarkan keperluan bebanan, terutamanya pada permulaan dan permintaan kuasa secara tiba-tiba. Sistem ini dilaksanakan dengan menggunakan peranti instrumen nasional (NI) yang dikuasakan oleh program LabVIEW. Ini kerana ia ringkas dan fleksibel untuk mengukur, pemprosesan dan rakaman data. Struktur yang direka bentuk membolehkan pelaksanaan masa sebenar hukum kawalan yang mantap yang mampu menangani keadaan yang tidak linear dan tidak menentu tanpa memerlukan pengiraan yang sukar untuk algoritma pengawal. Sambil itu, ia memudahkan kadar pensampelan yang cepat mengikut keperluan sistem kuasa. Hasil ujian dari pengawal menunjukkan bahawa sistem kawalan sel fuel yang baru memberikan prestasi yang baik dengan mengurangkan jumlah gas hidrogen yang terbazir berbanding sistem gelung terbuka dengan pengurangan sebanyak dari 30 % hingga 80 % pada variasi beban. Peningkatan ini memberi manfaat kepada mana-mana PEMFC yang mengalami permintaan kuasa turun naik, terutama untuk aplikasi kenderaan.

 

Kata kunci: Sel bahan api PEM, perkadaran, kamiran dan perbezaan (PID), pengawal bahan reaktan, LabVIEW, instrument nasional

 

References

1.       Wang, J. (2015). Barriers of scaling-up fuel cells: Cost, durability and reliability. Energy, 80(0): 509 -521.

2.       Bizon, N. (2011). Nonlinear control of fuel cell hybrid power sources: Part I - Voltage control. Applied Energy, 88(7): 2559 - 2573.

3.       Thanapalan, K., Fan, Z., Premier, G., Maddy, J. and Guwy, A. (2011). Control-oriented PEM fuel cell system modeling and repetitive controller design. 2nd International Conference on Intelligent Control and Information Processing, 2: 1055 - 1060.

4.       Barbir, F. (2005) PEM Fuel Cells: Theory and practice. Academic Press Sustainable World, ed. R. C.Dorf. California: Elsevier. 433.

5.       Garcia-Gabin, W., Dorado, F. and Bordons, C. (2010). Real-time implementation of a sliding mode controller for air supply on a PEM fuel cell. Journal of Process Control, 20(3): 325 - 336.

6.       Kim, Y. S., Kim, S. I., Lee, N. W. and Kim, M. S. (2015). Study on a purge method using pressure reduction for effective water removal in polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 40(30): 9473 - 9484.

7.       Danzer, M. A., Wittmann, S. J. and Hofer, E. P. (2009). Prevention of fuel cell starvation by model predictive control of pressure, excess ratio, and current. Journal of Power Sources, 190(1): 86 - 91.

8.       Sekine, F., Eguchi, M., Kobayashi, Y. and Tsutsumi, Y. (2010). Measuring method for flow rate distribution between cells in a polymer electrolyte fuel cell stack. Journal of Power Sources, 195(18): 5971 - 5974.

9.       Tae-Hoon, K., Sang-Hyun, K., Wook, K., Jong-Hak, L. and Woojin, C. (2010). Development of the novel control algorithm for the small proton exchange membrane fuel cell stack without external humidification. Applied Power Electronics Conference and Exposition (APEC) Twenty-Fifth Annual IEEE: 2166 - 2173

10.    Yousfi-Steiner, N., Moçotéguy, P., Candusso, D. and Hissel, D. (2009). A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, consequences and diagnostic for mitigation. Journal of Power Sources, 194(1): 130 - 145.

11.    Rosli, R. E., Majlan, E. H., Wan Daud, W. R. and Hamid, S. A. A. (2012). Hydrogen rate manipulation of proton exchange membrane fuel cell (PEMFC) stack using feedback control system. IEEE International Conference on Power and Energy (PECon): 553 - 557.

12.    Zhou, F., Andreasen, S. J. and Kær, S. K. (2015). Experimental study of cell reversal of a high temperature polymer electrolyte membrane fuel cell caused by H2 starvation. International Journal of Hydrogen Energy, 40(20): 6672 - 6680.

13.    Varigonda, S. & Kamat, M. (2006). Control of stationary and transportation fuel cell systems: Progress and opportunities. Computers & Chemical Engineering. 30(10–12): 1735 - 1748.

14.    Kim, T.-H., Kim, S.-H., Kim, W., Lee, J.-H., Cho, K.-S., Park, K.-W. and Choi, W. (2010). Development of the novel control algorithm for the small proton exchange membrane fuel cell stack without external humidification. Journal of Power Sources, 195(18): 6008 - 6015.

 




Previous                    Content                    Next