Malaysian Journal of Analytical Sciences Vol 20 No 4 (2016): 923 - 930

DOI: http://dx.doi.org/10.17576/mjas-2016-2004-28

 

 

 

FABRICATION AND CHARACTERIZATION OF Fe-DOPED TUNGSTEN TRIOXIDE PHOTOELECTRODES IN AQUEOUS MEDIUM USING TUNGSTIC ACID AND FERROCENE AS STARTING MATERIALS

 

(Pembuatan dan Pencirian  Fotoelektrod Tungsten Trioksida Terdop Fe Dalam Medium Akueus Dengan Asid Tungstik dan Ferosin Sebagai Bahan Permulaan)

 

Ng Kim Hang 1, Nurul Akmal Jaafar1, Lorna Jeffery Minggu 1*, Mohammad bin Kassim1,2

 

1Fuel Cell Institute

2School of Chemical Sciences and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: lorna_jm@ukm.edu.my

 

 

Received: 5 February 2016; Accepted: 22 April 2016

 

 

Abstract

Different compositions of Fe-doped tungsten trioxide thin films were synthesized on fluorine-doped tin oxide (FTO) glass substrate by sol-gel method, with ferrocene and tungstic acid as starting materials. The synthesized thin films was characterized with X-ray diffraction (XRD), scanning electron microscope (SEM), UV/Vis spectrophotometer and photoelectrochemical (PEC) analysis. The results show that the surface morphology of the thin films became rough and the grain size increased along with the concentration of Fe. Monoclinic structure of tungsten trioxide was obtained for all doped and undoped WO3 and red-shift can be observed from UV-vis spectrum. Band gap reduced from 2.74 eV of undoped WO3 thin films to 2.60 eV of 20 % Fe-doped WO3 thin films. Photoactivities of all Fe-doped WO3 are higher than undoped thin films. The highest photoactivities contributed by 5 % Fe-doped WO3 films with photocurrent densities measured was 0.148 mA/cm2, which is 3 times higher compared to undoped WO3.

 

Keywords: Fe-doped WO3, direct water splitting, photoelectrochemical cell, photoanode

 

Abstrak

Filem nipis tungsten trioksida terdop Fe berbagai komposisi telah disediakan di atas kaca substrat FTO (fluorine-doped tin oxide) dengan kaedah sol-gel, dengan menggunakan ferosin dan asid tingstik sebagai bahan pemula. Filem nipis yang terhasil kemudiannya dicirikan dengan pembelauan sinar X (XRD), mikroskopi elektron pengimbasan (SEM), UV/Vis spektrofotometer dan analisis fotoelektrokimia. Keputusan menunjukkan bahawa morfologi permukaan filem nipis menjadi kasar dan saiz butiran bertambah dengan penambahan kepekatan Fe. Tungsten trioksida yang berstruktur monoklinik telah dihasilkan dan anjakan merah telah diperhatikan di dalam spectrum UV-vis. Jurang tenaga telah berkurang dari 2.74 eV (WO3 tulen) kepada 2.60 eV (20 % Fe-dop WO3). Fotoaktiviti WO3 terdop Fe adalah lebih tinggi berbanding WO3 tulen. Fotoaktiviti yang tertinggi dicatatkan oleh filem 5 % WO3 terdop Fe dengan ketumpatan fotoarus 0.148 mA/cm2. Ia adalah 3 kali ganda lebih tinggi berbanding WO3 tulen.

 

Kata kunci: Fe-dop WO3, pembelahan air secara langsung, sel fotoelektrokimia, fotoanod

 

References

1.       Ab Hamid, N. Z., Md Jahim, J., Anuar, N. and Khalid, S. (2012). Hydrogen production via rhodobacter sphaeroides NCIMB 8253. Sains Malaysiana, 41(12): 1587 – 1593.

2.       Wun Fui, M. L., Minggu, L. J. and Kassim, M. B. (2012). Photo-chemical properties of molybdenum dithiolene. Sains Malaysiana, 41:597 – 601.

3.       Fujishima, A. and Honda, K. (1972). Electrochemical photolysis of water at a semiconductor. Electrode Nature 238: 37 – 38.

4.       Ni, M., Leung, M. K. H., Leung, D. Y. C. and Sumathy, K. (2008). A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 11: 401 – 425.

5.       Weber,  M. F. and Dignam, M. J. (1986). Splitting water with semiconducting photoelectrodes-efficiency considerations. International Journal of Hydrogen Energy, 11: 225 – 232.

6.       Bolton, J. R, Strickler, S. J. and Connolly, J. S. (1985). Limiting and realizable efficiencies of solar photolysis of water. Nature, 316: 495 – 500.

7.       Murphy, A. B., Barnes, P. R. F., Randeniya, L. K., Plumb, I. C., Grey, I. E., Horne, M. D. and Glasscock, J. A. (2006). Efficiency of solar water splitting using semiconductor electrodes. International Journal of Hydrogen Energy, 31:1999 – 2017.

8.       Li, Y., Yu, H., Zhang, C., Fu, L., Li, G., Shao, Z. and Yi, B. (2013). Enhancement of photoelectrochemical response by au modified in TiO2 nanorods. International Journal of Hydrogen Energy 36: 14374 – 14380.

9.       Minggu, L. J., Ng, K. H., Kadir, H. A. and Kassim, M. B. (2014). Bilayer n-WO3/p-Cu2O photoelectrode with photocurrent enhancement in aqueous electrolyte photoelectrochemical reaction. Ceramics International, 40: 16015 – 16021.

10.    Rahman, G. and Joo, O. S. (2012). Photoelectrochemical Water Splitting at Nanostructured α-Fe2O3 Elecrodes. International Journal of Hydrogen Energy 37: 13989-13997.

11.    Pung, S. Y., Ong, C. S., Mohd Isha, K. and Othman, M. H. (2014). Synthesis and characterization of Cu-doped ZnO nanorods. Sains Malaysiana, 43(2): 273 – 281.

12.    Gavrilyuk, A. I. (1999). Photochromism in WO3 thin films. Electrochimica Acta 44: 3027 – 3037.

13.    He, T. and Yao, J. N. (2006). Photochromism in composite and hybrid materials based on transition-metal oxides and polyoxometalates. Progress in Materials Science, 51: 810 – 879.

14.    Kawasaki, H., Ueda, T., Suda, Y. and Ohshima, T. (2004). Properties of metal doped tungsten oxide thin films for NOx gas sensors grown by PLD method combined with sputtering process. Sensors and Actuators B, 100: 266 – 269.

15.    Monk, P. M. S., Akhtar, S. P., Boutevin, J. and Duffield, J. R. (2001). Toward the tailoring of electrochromic bands of metal–oxide mixtures. Electrochimica Acta 46: 2091 – 2096.

16.    Svensson, J. S. E. M. and Granqvist, C. G. (1985). Electrochromic coatings for smart windows. Solar Energy Materials, 12: 391 – 402.

17.    Teowee, G., Gudgel, T., McCarthy, K., Agrawal, A., Allemand, P. and Cronin, J. (1999). User Controllable Photochromic (UCPC) Devices. Electrochimica Acta, 44: 3017 – 3026.

18.    Avellaneda, C. O. and Bulhões, L. O. S. (2003). Photochromic properties of WO3 and WO3:X (X=Ti, Nb, Ta and Zr) thin films. Solid State Ionics, 165: 117 – 121.

19.    Finlason, A. P., Ward, E., Tsaneva, V. N. and Glowacki, B. A. (2005). Bi2O3–WO3 compounds for photocatalytic applications by solid state and viscous processing. Journal of Power Sources 145: 667 – 674.

20.    Karuppasamy, K. M. and Subrahmanyam, A. (2008). The electrochromic and photocatalytic properties of electron beam evaporated vanadium-doped tungsten oxide thin films. Solar Energy Materials and Solar Cells, 92: 1322 – 1326.

21.    Memar, A., Phan, C. M. and Tade, M. O. (2012). Influence of surfactants on Fe2O3 nanostructure photoanode. International Journal of Hydrogen Energy, 37: 16835 – 16843

22.    Scarminio, J., Urbano, A. and Gardes, B. (1999). The Beer-Lambert Law for electrochromic tungsten oxide thin films. Materials Chemistry and Physics, 61: 143 – 146.

23.    Sivakumar, R., Jayachandran, M. and Sanjeeviraja, C. (2004). Studies on the effect of substrate temperature on (VI–VI) textured tungsten oxide (WO3) thin films on glass, SnO2:F substrates by PVD:EBE technique for electrochromic devices. Materials Chemistry and Physics, 87: 439 – 445.

24.    Su,  L., Wang, H. and Lu, Z. (1998). All-solid-state electrochromic window of prussian blue and electrodeposited WO3 film with poly(ethylene oxide) gel electrolyte. Materials Chemistry and Physics, 56: 266 – 270.

25.    Tong, M., Dai, G. and Gao, D. (2001). WO3 thin film sensor prepared by sol–gel technique and its low-temperature sensing properties to trimethylamine. Materials Chemistry and Physics, 69: 176 – 179.

26.    Enesca, A., Duta, A. and Schoonman, J. (2007). Study of photoactivity of tungsten trioxide (WO3) for water splitting. Thin Solid Films, 515: 6371 – 6374.

27.    Gavrilyuk, A. I. (2009). Application of WO3 thin films for enhancement of photolysis in AgCl. Solar Energy Materials and Solar Cells, 93: 1885 – 1895.

28.    Hong, S. J., Jun, H., Borse, P. H. and Lee, J. S. (2009). Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems. International Journal of Hydrogen Energy, 34: 3234 – 3242.

29.    Su, L., Dai, Q. and Lu, Z. (1999). Spectroelectrochemical and photoelectrochemical studies of electrodeposited tungsten trioxide films. Spectrochimica Acta Part A, 55: 2179 – 2185.

30.    Bamwenda, G. R. and Arakawa, H. (2001). The visible light induced photocatalytic activity of tungsten trioxide powder. Applied Catalysis A, 210: 181 – 191.

31.    Sigh, A. P., Kumari, S., Shrivastav, R., Dass, S. and Satsangi, V. R. (2008). Iron doped nanostructured TiO2 for photoelectrochemical generation of hydrogen. International Journal of Hydrogen Energy 33: 5363 – 5368.

32.    Hameed, A., Gondal, M. A. and Yamani, Z. H. (2004). Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: role of 3d-orbitals. Catalysis Communication, 5: 715 – 719.

33.    Saremi-Yarahmadi, S., Tahir, A. A., Vaidhyanathan, B. and Wijayantha, K. G. U. (2008). Fabrication of nanostructured α-Fe2O3 electrodes using ferrocene for solar hydrogen generation. Material Letters, 53: 523 – 526.

34.    Minggu, L. J., Daud, W. R. W. and Kassim, M. B. (2010). An overview of photocells and photoreactors for photoelectrochemical water splitting. International Journal of Hydrogen Energy 35: 5233 – 5244.

35.    Yagi, M., Maruyama, S., Sone, K., Nagai, K. and Norimatsu, T. (2008). Preparation and photoelectrocatalytic activity of a nano-structured WO3 platelet film. Journal of Solid State Chemistry, 181: 175 – 182.

36.    Solarska, R., Alexander, B. D. and Augustynski, J. (2006). Electrochromic and photoelectrochemical characteristics of nanostructured WO3 films prepared by a sol-gel method. Comptes Rendus Chimie, 9: 301 – 306.

37.    Ng, K. H., Minggu, L. J., Jumali, M. H. H. and Kassim, M. B. (2012). Fotoelektrod tungsten trioksida terdop nikel untuk tindak balas pembelahan air fotoelektrokimia. Sains Malaysiana, 41(7):  893 – 899

38.    Upadhyay, S. B., Mishra, R. K. and Sahay, P. P. (2014). Structural and alcohol response characteristics of Sn-doped WO3 nanosheets. Sensors and Actuators B: Chemical 193: 19 – 27.

39.    Boudjemaa, A. and Trari, M. (2010). Photo-catalytic hydrogen production over Fe2O3 based catalysts. International Journal of Hydrogen Energy, 35: 7684 – 7689.

40.    Łącz, A. and Pasierb P. (2013). Synthesis of BaCe1-xYxO3-δ-BaWO4 composite protonic conductors. Journal of Thermal Analysis and Calorimetry, 113: 405-412.

41.    Sun, Y., Murphy, C. J.,  Reyes-Gil, K. R., Reyes-Garcia, E. A., Thornton, J. M., Morris, N. A. and Raftery, D. (2009). Photoelectrochemical and structural characterization of carbon-doped WO3 films prepared via spray pyrolysis. International Journal of Hydrogen Energy, 34: 8476 – 8484.

42.    Redecka, M., Rekas, M., Trenczek-Zajac, A. and Zakrzewska, K. (2008). Importance of the band gap energy and flat band potential for application of modified TiO2 photoanodes in water photolysis. Journal of Power Sources, 181: 46 – 55.

43.    Suk, J. H., Jun, H., Borse, P. H. and Lee, J. S. (2009). Size effects of WO3 nanocrystals for photooxidation of water in particulate suspension and photoelectrochemical film systems. International Journal of Hydrogen Energy, 34: 3234 – 3242.

 

 




Previous                    Content                    Next