Malaysian Journal of Analytical Sciences Vol 20 No 4 (2016): 913 - 922

DOI: http://dx.doi.org/10.17576/mjas-2016-2004-27

 

 

 

EFFECT OF LONG TIME OXYGEN EXPOSURE ON POWER GENERATION OF MICROBIAL FUEL CELL WITH ENRICHED MIXED CULTURE

 

(Kesan Terhadap Penjanaan Kuasa Sel Bahan Api Mikrob dengan Kultur Campuran yang Diperkaya Melalui Pendedahan pada Oksigen untuk Jangka Masa Lama)

 

Mimi Hani Abu Bakar1, 2, 3*, Neil F Pasco2, Ravi Gooneratne3, Kim Byung Hong1,4,5

 

1Fuel cell Institute,

Universiti Kebangsaan Malaysia, 43000 UKM Bangi, Selangor, Malaysia

2Lincoln Ventures Ltd,

PO Box 133, Lincoln, Christchurch 7640, New Zealand

3Lincoln University, PO Box 84, Lincoln, 7647, New Zealand

4Korea Institute of Science & Technology,

Seongbuk-ku, Seoul 136-792, Korea

5State Key Laboratory of Urban Water Resource & Environment,

Harbin Institute of Technology, Harbin 150090, China

 

*Corresponding author: mimihani@ ukm.edu.my

 

 

Received: 5 February 2016; Accepted: 22 April 2016

 

 

Abstract

In this study, we are interested in the effect of long time exposure of the microbial fuel cells (MFCs) to air on the electrochemical performance. Here, MFCs enriched using an effluent from a MFC operated for about eight months. After 30 days, the condition of these systems was reversed from aerobic to anaerobic and vice versa, and their effects were observed for 11 days.  The results show that for anaerobic MFCs, power generation was reduced when the anodes were exposed to dissolved oxygen of 7.5 ppm. The long exposure of anodic biofilm to air led to poor electrochemical performance. The power generation recovered fully when air supply stopped entering the anode compartment with a reduction of internal resistance up to 53%.  The study was able to show that mixed facultative microorganism able to strive through the aerobic condition for about a month at 7.5 ppm oxygen or less. The anaerobic condition was able to turn these microbes into exoelectrogen, producing considerable power in relative to their aerobic state.

 

Keywords:  microbial fuel cell, aerobic, oxygen exposure, wastewater

 

Abstrak

Dalam kajian ini, kami berminat untuk mengesan prestasi elektrokimia sel bahan api mikrob (MFC) terhadap  pendedahan jangka masa panjang kepada udara. Di sini, MFC diperkaya menggunakan efluen daripada MFC yang telah beroperasi selama kira-kira lapan bulan. Selepas 30 hari, keadaan sistem ini telah diterbalikkan dari aerobik untuk anaerobik dan sebaliknya, dan kesannya diperhatikan selama 11 hari. Keputusan menunjukkan bahawa untuk MFC anaerobik, penjanaan kuasa telah berkurangan apabila anod terkena oksigen terlarut 7.5 ppm. Pendedahan jangka masa panjang biofilem anod kepada udara membawa kepada prestasi elektrokimia yang rendah. Penjanaan kuasa pulih sepenuhnya apabila bekalan udara berhenti memasuki ruangan anod dengan pengurangan rintangan sehingga 53 %. Kajian ini dapat menunjukkan bahawa mikroorganisma fakultatif campuran dapat hidup melalui keadaan aerobik selama sebulan pada 7.5 ppm oksigen atau kurang. Keadaan anaerobik mampu mengubah mikrob ini kepada eksoelektrogen, seterusnya menghasilkan kuasa yang tinggi berbanding dengan apabila berada di dalam keadaan aerobik.

 

Kata kunci:  sel bahan api mikrob, aerobik, pendedahan oksigen, air sisa

 

References

1.       Rittmann, B. E. (2006). Microbial ecology to manage processes in environmental biotechnology. Trends in Biotechnology, 24(6): 261 - 266.

2.       Kim, H. J., Park, H. S., Hyun, M. S., Chang, I. S., Kim, M. and Kim, B. H. (2002). A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme and Microbial Technology, 30(2): 145 - 152.

3.       Li, S.-L., Freguia, S., Liu, S. M., Cheng, S. S., Tsujimura, S., Shirai, O. and Kano, K. (2010). Effects of oxygen on Shewanella decolorationis NTOU1 electron transfer to carbon-felt electrodes. Biosensors and Bioelectronics, 25: 2651 - 2656.

4.       Wang , Y.-F., Cheng, S. S., Tsujimura, S., Ikeda, T. and Kano, K. (2006). E. coli-catalyzed bioelectrochemical oxidation of acetate in the presence of mediators. Bioelectrochemistry, 69(1): 74 - 81.

5.       Liu, H., Cheng, S. and Logan, B. E. (2005). Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environmental Science & Technology, 39(2): 658 - 662.

6.       Kim, B. H., Park, H. S., Kim, H. J., Kim, G. T., Chang, I. S., Lee, J. and Phung, N. T. (2004). Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Applied Microbiol Biotechnology, 63(3): 672 – 681.

7.       Kim, B., Ikeda, T., Park, H. S., Kim, H. J., Hyun, M. S., Kano, K., Takagi, K. and Tatsumi, H. (1999). Electrochemical activity of an Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1, in the presence of alternative electron acceptors. Biotechnology Techniques, 13(7): 475 - 478.

8.       Biffinger, J. C., Byrd, J. N., Dudley, B. L. and Ringeisen, B. R. (2008). Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells. Biosensors and Bioelectronics, 23(6):  820 - 826.

9.       Mohan, S. V., Velvizhi, G., Modestra, J. A., and Srikanth, S. (2014). Microbial fuel cell: Critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renewable and Sustainable Energy Reviews, 40: 779 - 797.

10.    Kim, J. R., Min, B. and Logan, B. E. (2005). Evaluation of procedures to acclimate a microbial fuel cell for electricity production. Applied Microbial Biotechnology, 68: 23 - 30.

11.    Rader, G.K. and Logan, B. E. (2010). Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate. International Journal of Hydrogen Energy, 35(17): 8848 - 8854.

12.    Atlas, R. M. (2005). Handbook of microbiological media. Second Edition ed. Acetate agar, Fluorida: Taylor & Francis Group.

13.    Weld, R. J. and Singh, R. (2011). Functional stability of a hybrid anaerobic digester/microbial fuel cell system treating municipal wastewater. Bioresource Technology, 102(2): 842 - 847.

14.    Luo, Y., Zhang, F., Wei, B., Liu, G., Zhang, R. and Logan, B. E. (2011). Power generation using carbon mesh cathodes with different diffusion layers in microbial fuel cells. Journal of Power Sources, 196(22): 9317 - 9321.

15.    Watson, V.J. and Logan, B. E. (2011). Analysis of polarization methods for elimination of power overshoot in microbial fuel cells. Electrochemistry Communications, 13(1): p. 54-56.

16.    Babauta, J., Renslow, R., Lewandowski, Z. and Beyenal, H. (2012). Electrochemically active biofilms: facts and fiction. A review. Biofouling, 28(8): 789 - 812.

17.    Ringeisen, B. R., Ray, R. and Little, B. (2007). A miniature microbial fuel cell operating with an aerobic anode chamber. Journal of Power Sources, 165: 591 - 597.

18.    Hutchinson, A. J., Tokash, J. C. and Logan, B. E. (2011). Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells. Journal of Power Sources, 196(22): 9213 -9219.

19.    Aelterman, P., Versichele, M., Marzorati, M., Boon, N. and Verstraete, W. (2008). Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresource Technology, 99: 8895- 8902.

20.    Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete. W. and Rabaey, K. (2006). Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 40(17): 5181 - 5192.

21.    Osman, M. H., Shah, A. A. and Walsh, F. C. (2010). Recent progress and continuing challenges in bio-fuel cells. Part II: Microbial. Biosensors and Bioelectronics, 26(3): 953 - 963.

22.    Tayhas, G., Palmore, R. and Whitesides, M. G. (1994). Chapter 14: Microbial and enzymatic biofuel cells, in Enzymatic conversion of biomass for fuels production. American Chemical Society: Massachusetts.

23.    Cheng, S., Liu, H. and Logan, B. E. (2006). Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing. Environmental Science & Technology, 40(7): 2426 - 2432.

24.    Logan, B. E. (2008). Mechanism of electron transfer, in Microbial Fuel Cell.  John Wiley & Sons, Inc: New Jersey. pp. 13.

25.    Li, X.M., Cheng, K. Y., Selvam, A. and Wong, J. W (2013). Bioelectricity production from acidic food waste leachate using microbial fuel cells: Effect of microbial inocula. Process Biochemistry, 48(2):  283 - 288.

26.    Khan, M.R., Chan, K. M., Ong, H. R., Cheng, C. K. and Rahman, W. (2015). Nanostructured pt/mno2 catalysts and their performance for oxygen reduction reaction in air cathode microbial fuel cell. International Journal of Electrical, Computer, Electronics and Communication Engineering, 9(3):  295 - 301.

27.    Lefebvre, O., Shen, Y., Tan, Z., Uzabiaga, A., Chang, I. S. and Ng, H. Y. (2011). A comparison of membranes and enrichment strategies for microbial fuel cells. Bioresource Technology, 102(10):  6291 - 6294.

28.    Cunningham, A.B., Lennox, J. E. and Ross, R. J. (2014). The Biofilms Hypertextbook: Intermediate level. Chapter 2: Biofilm formation and growth 2001-2008; Section 3: Biofilm development]. Available from: http://biofilmbook.hypertextbookshop.com/public_version/contents/chapters/chapter002/ section003/blue/page003.html [Access online 19 September 2014].

29.    Pastorella, G., Gazzola, G., Guadarrama, S. and Marsili, E. (2012). Biofilms: Applications in bioremediation, in Microbial Biofilms: Current research and applications, G. Lear and G.D. Lewis, Editors, Horizon Scientific Press: UK. : 73 - 98.

30.    Dirckx, P. (1997). Biofilm structure with labels, Biofilm.jpg, Center for Biofilm Engineering: Montana.

31.    Rahimnejad, M., Ghoreyshi, A. A., Najafpour, G. and Jafary, T. (2011). Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Applied Energy, 88(11): 3999 -4004.

32.    Haslett, N. D. (2012). Development of a eukaryotic microbial fuel cell using Arxula adeninivorans, in Department of Agricultural Sciences. Lincoln University. pp. 245.

33.    Feng, Y., Yang, Q., Wang, X. and Logan, B. E. (2010).Treatment of carbon fiber brush anodes for improving power generation in air-cathode microbial fuel cells. Journal of Power Sources, 195(7): 1841 - 1844.

34.    Santoro, C. Lei, Y., Li, B. and Cristiani, P. (2012). Power generation from wastewater using single chamber microbial fuel cells (MFCs) with platinum-free cathodes and pre-colonized anodes. Biochemical Engineering Journal, 62:  8 - 16.

 

 




Previous                    Content                    Next