Malaysian Journal of Analytical Sciences Vol 20 No 4 (2016): 946 - 954

DOI: http://dx.doi.org/10.17576/mjas-2016-2004-30

 

 

 

MOLECULAR AND ELECTRONIC STRUCTURES OF A NEW RUTHENIUM-TUNGSTEN BIMETALLIC COMPLEX USING DENSITY FUNCTIONAL THEORY CALCULATIONS

 

(Struktur Molekul Dan Elektronik Kompleks Dwilogam Rutenium-Tungsten Berdasarkan Pengiraan Teori Fungsi Ketumpatan)

 

Khuzaimah Arifin1*, Wan Ramli Wan Daud1,2, Mohammad B. Kassim1,3

 

1Fuel Cell Institute

2Department of Chemical and Process Engineering

3School of Chemical Sciences and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: khuzaim@ukm.edu.my

 

 

Received: 5 February 2016; Accepted: 22 April 2016

 

 

Abstract

A potential dye sensitizer material for solar cell composed of a ruthenium-(4, 4’dimethyl-2, 2′-bipyridine)-isothiocyanato-tungsten-[bis-(phenyl-1, 2-ethilenodithiolenic)] bimetallic complex structure was successfully developed using Density Functional Theory (DFT) calculations. The optimal structure was realized by calculations using the generalized gradient approximation (GGA) framework in a double numeric plus polarization (DNP) basis set using the following three functional methods: Becke-Pardew (BP), Becke-Lee-Yang-Parr (BLYP) and Perdew-Burke-Ernzerhof (PBE). The PBE calculation gave a structure with bond lengths and angles that approximated the experimental data. The restricted-spin calculation of PBE found that BM has 339 molecular orbitals in which the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are located at orbital numbers 312 and 313, respectively. The HOMO was delocalized over the W(S2C2) ring, the ruthenium metal center and the thiocyanate bridging ligand. In contrast, the LUMO was found mainly at the bipyridyl ligand with a small contribution from the ruthenium metal center. Electron excitation from the HOMO ® LUMO occurred at 2964 nm with an excitation energy of 0.42 eV, which is depicted by the charge transfer from one metal to another (intervalence charge transfer, IVCT) or as a manifestation of the NCS bridging ligand.

 

Keywords:  density functional theory, bimetallic, thiocyanate, bridging ligand

 

Abstrak

Pembangunan struktur molekul kompleks dwilogam rutenium-(4,4’dimetil-2,2′-bipiridina)-isotiosianat-tungsten[bis-(fenil-1,2-etilenoditiolena)] (BM) telah dilakukan menggunakan kaedah pengkomputeran Teori Fungsi Ketumpatan (DFT) berdasarkan data yang diperoleh dari eksperimen. Untuk mendapatkan struktur yang optimum, pengiraan telah dilakukan dengan menggunakan pendekatan gradien menyeluruh (GGA) dengan set asas pengutuban tambahan gandaan angka (DNP) pada tiga kaedah fungsian; Becke-Pardew (BP), Becke-Lee-Yang-Parr (BLYP) dan Perdew–Burke–Ernzerhof (PBE). Pengiraan menggunakan fungsian PBE menghasilkan struktur dengan panjang dan sudut ikatan yang paling mendekati nilai eksperimen. Hasil pengiraan spin terhad dengan PBE mendapati bahawa kompleks BM memiliki 339 orbital molekul, di mana orbital molekul berisi tertinggi (HOMO) dan orbital molekul tak berisi terendah (LUMO) masing-masing berada pada orbital molekul 312 dan 313. Orbital HOMO kompleks dwilogam BM didapati dinyah setempat pada gelang W(S2C2), logam pusat Ru serta ligan penghubung NCS. Sebaliknya, orbital LUMO sebahagian besarnya berada pada ligan bipiridil dengan sedikit sumbangan dari logam pusat Ru. Tenaga pengujaan elektron dari HOMO ® LUMO wujud sebagai puncak penyerapan pada 2964 nm dengan tenaga pengujaan 0.42 eV yang berpadanan dengan peralihan cas daripada logam kepada logam (peralihan cas antara velensi, IVCT) yang menyokong peranan NCS sebagai ligan titian.

 

Kata kunci:  teori fungsi ketumpatan, kompleks dwilogam, thiosianat, ligan penghubung

 

References

1.       Guo, P., Ma, R., Guo, L., Yang, L., Liu, J., Zhang, X., Pan, X. and Dai, S. (2010). Theoretical study on the electronic absorption spectra and molecular orbitals of ten novel ruthenium sensitizers derived from N3 and K8. Journal of Molecular Graphics and Modelling, 29: 498 – 505.

2.       Islam, M. S. and Fisher, C. A. J. (2014). Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chemical Society Reviews, 43: 185 – 204.

3.       Mehmood, F. and Pachter, R. (2014). Density functional theory study of chemical sensing on surfaces of single-layer MoS2 and graphene. Journal of Applied Physics, 115: 164302. 

4.       Khan, W., Reshak, A. H., Ahmad, K. R. and Alahmed, Z. A. (2014) Magnetic and thermoelectric properties of three different atomic ratio of Bi/Mn in BiMn2O5: DFT approach. Journal of Magnetism and Magnetic Materials, 369: 234 – 242.

5.       Shariatinia, Z. and Shahidi, S. (2014). A DFT study on the physical adsorption of cyclophosphamide derivatives on the surface of fullerene C60 nanocage. Journal of Molecular Graphics and Modelling, 52: 71 – 81.

6.       Young, D. C. (2001). Computational chemistry: A practical guide for applying techniques to real-world problems, John Wiley & Sons, Inc., New York.

7.       Arifin, K., Daud, W. R. W. and Kassim, M.B. (2013). Optical and photoelectrochemical properties of a TiO2 thin film doped with a ruthenium-tungsten bimetallic complex. Ceramics International 39: 2699 –2707.

8.       Arifin, K., Daud, W. R. W. and Kassim, M. B. (2014) A novel ruthenium-tungsten bimetallic complex dye-sensitizer for photoelectrochemical cells application. Sains Malaysiana, 43 (1): 95 – 101.

9.       Becke, A. D. (1988). Density-functional exchange-energy approximation with correct asymptotic behavior. Physical Review, 38: 3098 – 3100.

10.    Parr, R. G. and Yang, W. (1989). Density-functional theory of atoms and molecules, Oxford Univ. Press, Oxford.

11.    Perdew, J. P., Burke, K., and Ernzerhof, M. (1996). Generalized gradient approximation made simple. Physical Review Letters, 77: 3865.

12.    Sokolov, A. N., Atahan-Evrenk, S., Mondal, R., Akkerman, H. B., Sánchez-Carrera, R. S., Granados-Focil, S. J., Schrier, S. C., Mannsfeld, B., Zoombelt, A. P., Bao, Z. and Aspuru-Guzik, A. (2011). From computational discovery to experimental characterization of a high hole mobility organic crystal. Nature Communications, 2: 437 – 445.

13.    Wilson, G. J. and Will, G. D. (2010). Density-functional analysis of the electronic structure of tris-bipyridyl Ru(II) sensitisers. Inorganic Chimica Acta 363(8): 1627 – 1638.

14.    Delley, B. (2010). Time dependent density functional theory with DMol3. Journal of Physics: Condensed Matter, 22: 384208.

15.    Eran, B. B., Singer, D., Pickardt, J. and Praefcke, K. (2001). Thiocyanato-bridged platinum heterocycles: structure and properties of disc-like metallomesogens. Journal of Organometallic Chemistry, 620: 249 -255.

16.    Umakoshi, K., Nishimoto, E., Sokolov, M., Kawano, H., Sasaki, Y. and Onishi, M. (2000). Synthesis, structure, and properties of sulfido-bridged dinuclear tungsten(V) complex of dithiolene, (Pr4N)2[W2(m-S)2{S2C2(CO2Et)2}4]. Journal of Organometallic Chemistry, 611: 370 - 375.

17.    Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. and Taylor, R. J. (1987). Tables of bond lengths determined by X-Ray and neutron diffraction. Part 1. Bond lengths in organic compounds,  Journal of the Chemical Society, Perkin Transactions 1, 112: 1 - 19.

18.    Arifin, K., Daud, W. R. W. and Kassim, M. B. (2014). A DFT analyses for molecular structure, electronic state and spectroscopic property of a dithiolene tungsten carbonyl complex. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 124: 375 – 382.

19.    Nazeeruddin, M. K., Angelis, F. D., Fantacci, S., Selloni, A., Viscardi, G., Liska, P., Ito, S., Takeru, B. and Grätzel, M. (2005). Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Journal of the American Chemical Society, 127: 16835 – 16847.

20.    Rabias, I., Howlin, B. J., Provata, A. And Theodorou, D. (2000). Modelling of structural and vibrational properties of poly(p-phenylene) and polypyrrole using molecular orbital methods. Molecular Simulation 24: 95 – 105.

 




Previous                    Content                    Next