Malaysian Journal of Analytical Sciences Vol 20 No 5 (2016): 1095 - 1103

DOI: http://dx.doi.org/10.17576/mjas-2016-2005-15

 

 

 

THERMAL BEHAVIORS OF OIL PALM EMPTY FRUIT BUNCH FIBER UPON EXPOSURE TO ACID-BASE AQUEOUS SOLUTIONS

 

(Perilaku Terma Serabut Tandan Kosong Sawit Selepas Rawatan Larutan Akueus Asid-Alkali)

 

Nur Syakilla Hassan1 and Khairiah Haji Badri1,2*

 

1School of Chemical Sciences and Food Technolog, Faculty of Science and Technology

2Polymer Research Center, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: kaybadri@ukm.edu.my

 

 

Received: 10 June 2015; Accepted: 21 July 2016

 

 

Abstract

The effect of chemical treatment on the chemical composition, functional group, crystallinity and thermal stability of palm oil empty fruit bunch (EFB) fiber were investigated. Chemical treatment was conducted by treating EFB with 10% sodium hydroxide aqueous solution and 2% hydrogen peroxide aqueous solution separately. The results indicated that chemical treatment managed to affect chemical composition of the fiber. FTIR analysis proved the removing of hemicellulose and lignin during the treatment based on the peak disappearance around 1700 cm-1 and 1600 cm-1. The XRD diffractogram showed an increase in crystallinity index of the fiber especially for NaOH treatment. Removal the amorphous component of the fiber influences the thermal degradation of the fiber.

 

Keywords:  empty fruit bunch, chemical treatment, thermal properties

 

Abstrak

Kajian ke atas serabut tandan kosong sawit (EFB) telah dijalankan untuk melihat kesan rawatan kimia terhadap komposisi serabut, kumpulan berfungsi, kehabluran dan kestabilan terma serabut. EFB telah menjalani rawatan kimia menggunakan 10% larutan akues natrium hidroksida dan 2% larutan akues hidrogen peroksida secara berasingan. Hasil kajian menunjukkan rawatan kimia memberi kesan terhadap komposisi kimia serabut. Melalui analisis spektroskopi FTIR, penyingkiran hemiselulosa dan lignin telah berlaku semasa rawatan dijalankan. Keadaan ini dibuktikan melalui kehilangan puncak serapan sekitar 1700 cm-1 dan 1600 cm-1. Difraktogram XRD pula menunjukkan peningkatan dalam indek kehabluran bagi serabut yang menjalani rawatan NaOH.  Penyingkiran komponen amorfus didapati mempengaruhi degradasi terma serabut EFB.

 

Kata Kunci:  tandan kosong sawit, rawatan kimia, sifat terma

 

References

1.       Kumar, P., Barrett, M. D., Delwiche, J. M. and Stroeve P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research, 48 (8): 3713 – 3729.

2.       Harun, N. A. F., Baharuddin, A. S., Mohd Zainudin, M. H., Bahrin, E. K., Nazli Naim, M. and Zakaria, R. (2013). Cellulase production from treated oil palm empty fruit bunch degradation by locally isolated Thermobifida Fusca. Bioresourse, 8(1): 676 – 687.

3.       Jayabal, S., Sathiyamurthy, S., Loganathan, K. T. and Kalyanasundaram, S. (2012). Effect of soaking time and concentration of NaOH solution on mechanical properties of coir–polyester composites. Bulletin of Material Science, 35(4): 567 – 574.

4.       Ouajai, S. and Shanks, R. A. (2005).  Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polymer Degradation and Stability, 89(2): 327 – 335.

5.       Harmsen, P. F. H., Huijgen, W. J. J., Bermúdez López, L. M. and Bakke, R. R. C. (2010). Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. Food and Biobased Research. 59: 1 – 49.

6.       Brígida, A. I. S., Calado, V. M. A., Gonçalves, L. R. B. and Coelho, M. A. Z. (2010). Effect of chemical treatments on properties of green coconut fiber. Carbohydrate Polymers, 79: 832 – 838.

7.       Deepa, B., Abraham, E., Cherian, B. M., Bismarck, A., Jonny, J. B., Laly, A. P., Leao, A. L., de Souza, S. F. and Kottaisamy, M. (2011). Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresource Technology, 102 (2): 1988 – 1997.

8.       Das, H., Dutta, D., Saikia, P., Kalita, D. and Goswami, T. (2014). Novel Composite Materials from Polymeric Waste and Modified Agro-Fiber. Applied Science and Advanced Materials International, 1(1): 3 – 11.

9.       Sreekala, M. S., Kumaran, M. G. and Sabu, T. (1997). Oil palm fibers: Morphology, chemical composition, surface modification, and mechanical properties. Journal of Applied Polymer Science, 66: 821 – 835.

10.    Rayung, M., Ibrahim, N. A., Zainuddin, N., Saad, W. Z., Abdul Razak, N. I. and Chieng, B. W. (2014). The effect of fiber bleaching treatment on the properties of poly(lactic acid)/oil palm empty fruit bunch fiber composites. International Journal of Molecular Sciences, 15(8): 14728 – 14742.

11.    Ramli, R., Stephen, S. and Jamaludin, M. A. (2002). Properties of medium density fiberboard from oil palm empty fruit bunch fiber. Journal of   Oil Palm Research, 14(2): 34 – 40.

12.    Bulian, F. and Graystone, J. (2009). Wood Coatings: Theory and Practice Theory and Practice. Elsevier, pp 15 – 19.

13.    Mankar, S. S., Chaudhari, A. R. and Soni, I. (2012). Lignin in phenol-formaldehyde adhesives. International Journal of Knowledge Engineering, 3(1): 116 – 118.

14.    Privas, E. and Navard, P. (2013). Preparation, processing and properties of lignosulfonate–flax composite boards. Carbohydrate Polymers, 93: 300 – 306.

15.    Toledano, A., Serrano, L., Garcia, A., Mondragon, I. and Labidi, J. (2010). Comparative study of lignin fractionation by ultrafiltration and selective precipitation. Chemical Engineering Journal, 157 (1): 93 – 99

16.    Mohamad Ibrahim, M.  N. Zakaria, N. Stephen, C. S. Sulaiman, O. and Hashim, R.  (2011). Chemical and thermal properties of lignins from oil palm biomass as a substitute for phenol in a phenol formaldehyde  resin production. Carbohydrate Polymers, 86: 112 – 119.

17.    Yao, F., Wu, Q., Lei, Y., Guo, W. and Xu Y. (2008). Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polymer Degradation and Stability, 93: 90 – 98.

18.    Ogah, A. O., Afiukwa, J. N. and Englund, K. (2014). Characterization and comparison of thermal stability of agro waste fibers in bio-composites application. Journal of Chemical Engineering and Chemistry Research, 1(2): 84 – 93.

19.    Browning, B. L. (1967). Holocelluloseas perchlorite method. Methods of wood chemistry. John Wiley and Sons, pp 394 – 396.

20.    Abraham, E., Deepaa, B., Pothan, L. A.  Jacob, M. and Thomas, S.  Cvelbar U. and Anandjiwala R (2011). Extraction of nanocellulose fibrils from lignocellulosic fibers:  A novel approach. Carbohydrate Polymers, 86:1468 – 1475.

21.    Suradi, S. S., Yunus, R. M., Beg, M. D. H. and Yusoz, A. M. F. (2009). Influence pre-treatment on the properties of lignocellulose based biocomposite. National Conference on Postgraduate Research (NCON-PGR). Malaysia.

22.    Kumar, R., Mago, G., Balan, V. and Wyman, C. E. (2009). Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresource Technology, 100: 3948 – 3962.

23.    Mohamad Remli, N. A., Md Shah, U. K., Mohamad, R. and Abd-Aziz, S. (2014). Effects of chemical and thermal pretreatments on the enzymatic saccharification of rice straw for sugars production. Bioresourse, 9(1): 510 – 522.

24.    Sun, X. F., Jing, Z., Fowler, P., Wu Y. and Rajaratnam, M. (2011). Structural characterization and isolation of lignin and hemicelluloses from barley straw. Industrial Crops and Products, 33: 588 – 598.

25.    Alemdar, A. and Sain, M. (2008). Isolation and characterization of nanofibers from agricultural residues – Wheat straw and soy hulls. Bioresource Technology, 99: 1664 – 1671.

26.    Mohamad Haafiza, M. K., Eichhorn, S. J., Hassan, A. and Jawaid, M. (2013). Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohydrate Polymer, 93(2): 628 – 634.

27.    Joonobi, M., Harun, J., Shakeri, A., Misra, M. and Osman, K. (2009). Chemical composition, crystallinity and thermal degradation of bleached and unbleached Kenaf bast (Hibicus Cannabinus) pulp and nanofibers. BioResource, 4: 626 – 639.

28.    Segal, L., Creely, J. J., Martin, A. E. Jr. and Conrad, C. M. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29: 786 – 794.

29.    Poletto, M., Heitor, L., Ornaghi, J., Ademir, J. and Zattera, (2014). Native cellulose: Structure, characterization and thermal properties. Materials, 7: 6105 – 6119.

30.    Then, Y.Y., Ibrahin, N. A., Zainuddin, N., Chieng, B. W., Ariffin, H. and Wan Yunus, W. M. Z. (2015). Influence of alkaline peroxide treatment of fiber on mechanical properties of oil palm mesocarp fiber/poly(butylene succinate) biocomposite. Bioresources, 10(1): 1730 – 1746.

31.    Haykiri-Acma, H., Yaman, S. and Kucukbayrak, S. (2010). Comparison of the thermal reactivities of isolated lignin and holocellulose during pyrolysis. Fuel Processing Technology, 91: 759 – 764.

32.    Brebu, M. and Vasile, C. (2010). Thermal degradation of lignin – A review. Cellulose Chemistry and Technology, 44(9): 353 – 363.

 




Previous                    Content                    Next