Malaysian Journal of Analytical Sciences Vol 20 no 5 (2016): 1104 - 1111

DOI: http://dx.doi.org/10.17576/mjas-2016-2005-16

 

 

 

ZETA POTENTIAL AND ENVIRONMENTAL SCANNING ELECTRON MICROSCOPY ANALYSIS IN DEPROTEINISATION OF NATURAL RUBBER LATEX

 

(Analisis Keupayaan Zeta dan Pengimbas Persekitaran Mikroskopi Elektron di dalam Penyahprotein Lateks Getah Asli)  

 

Nurulhuda Abdullah*, Asrul Mustafa, Mok Kok Lang

 

Technology and Engineering Division,

Malaysian Rubber Board, 47000 Sungai Buloh, Selangor Darul Ehsan, Malaysia

 

*Corresponding author: nurulhuda.a@lgm.gov.my

 

 

Received: 10 June 2015; Accepted: 21 July 2016

 

 

Abstract

This paper describes the effect of protein denaturants namely, urea and sodium dodecyl sulphate (SDS) in the deproteinisation of high ammonia natural rubber latex (HA-NRL). It had been shown that latex proteins were reduced more in the presence of urea alone (48%) than in the presence of SDS (18%). The synergistic effect when both urea and SDS were used in the latex deproteinisation attributed to the higher protein removal efficacy (55%). Higher zeta potential value was observed when only SDS was used, suggesting higher colloidal stability. Environmental Scanning Electron Microscopy (ESEM) revealed that without SDS, the use of urea single-handedly in the deproteinisation process promoted aggregation of latex particles, possibly due to the dismissal of latex proteins which helped to stabilise latex colloidal. Thus, it is most likely that urea serves as a protein unfolding agent during latex deproteinisation process, while SDS functions as a latex stabiliser with no significant effects on latex proteins discharge.

 

Keywords:  urea, sodium dodecyl sulphate, deproteinisation, zeta potential, environmental scanning electron microscopy

 

Abstrak

Kertas kerja ini menghuraikan kesan bahan-bahan pengubah sifat protein iaitu urea dan natrium dodekil sulfat (NDS) dalam penyahprotein lateks getah asli tinggi ammonia (HA-NRL). Ia telah menunjukkan bahawa protein lateks lebih banyak dikurangkan dengan kehadiran urea sahaja (48%) berbanding dengan kehadiran NDS sahaja (18%). Keberkesanan penyingkiran protein yang lebih tinggi (55%) mungkin telah disebabkan oleh kesan sinergi apabila kedua-dua urea dan NDS digunakan di dalam penyahprotein lateks. Nilai keupayaan zeta yang tinggi diperhatikan apabila hanya NDS digunakan, menunjukkan kestabilan koloid yang lebih tinggi. Pengimbas Persekitaran Mikroskopi Elektron (ESEM) menunjukkan bahawa tanpa NDS, penggunaan hanya urea dalam proses penyahprotein menyumbang kepada kesan pengagregatan zarah lateks, kemungkinan disebabkan oleh penyingkiran protein lateks yang membantu dalam kestabilan koloid lateks. Oleh yang demikian, besar kemungkinan fungsi utama urea semasa proses penyahprotein lateks adalah sebagai ejen pembuka protein manakala NDS berfungsi sebagai penstabil lateks tanpa kesan ketara pada penyingkiran protein lateks.

 

Kata kunci:  urea, natrium dodekil sulfat, penyahprotein, keupayaan zeta, pengimbas persekitaran mikroskopi elektron

 

References

1.       Hasma H. and Subramaniam A. (1986). Composition of lipids in latex of Hevea brasiliensis clone RRIM 501, Journal Natural Rubber Research, 1(1):30 – 40.

2.       Aprem A. S. and Pal S. N. (2002). Latex allergy and recent developments in deproteinisation of natural rubber latex Journal of Rubber Research, 5(2): 94 – 134.

3.       Sansatsadeekul, J., Sakdapipanich, J. and Rojruthai, P. (2011). Characterization of associated proteins and phospholipids in natural rubber latex. Journal of Bioscience and Bioengineering, 111(6): 628 – 634.

4.       Ma'zam Md Said, Ng, K. P., Hasma, H., Mok, K. L., Asrul, M., Lai, P. P. and Saadiah, S. (2004). Low protein natural rubber lattices. Journal of Rubber Research, 7(1): 30 – 55.

5.       Amnuaypornsri, S., Sakdapipanich, J., Toki, S., Hsiao, B. S., Ichikawa, N. and Tanaka, Y. (2008). Strain-induced crystallization of natural rubber: effect of proteins and phospholipids. Rubber Chemistry and Technology, 81(5): 753 – 766.

6.       Nor-Hidayaty, K., Shamsul, K., Asrul, M. and Ahmad-Nazir, K. (2011). Comparisons of some properties of deproteinised natural rubber vulcanisates and observations on dynamic load analysis. Journal of Rubber Research, 14(3): 129 – 138.

7.       Othman, A. and Hasma, H. (1988). Influence of Hevea proteins and amino-acids on properties of natural rubber, Proceedings International Rubber Technology Conference: 166 – 177.

8.       Burfield, D. R. (1986). Storage hardening of natural rubber: An examination of current mechanistic proposals. Journal of Natural Rubber Research, 1(3): 202 – 208.

9.       Sakdapipanich, J. T. (2007). Structural characterization of natural rubber based on recent evidence from selective enzymatic treatments. Journal of Bioscience and Bioengineering, 103(4): 287 – 292.

10.    Sakdapipanich, J. T. and Rojruthai, P. (2012). Molecular structure of natural rubber and its characteristics based on recent evidence. InTech publisher: pp. 159 – 172.

11.    Creighton, T. E. (1995). Protein folding: An unfolding story. Current Biology, 5(4):353-356

12.    Creighton, T. E. (1979). Electrophoretic analysis of the unfolding of proteins by urea. Journal of Molecular Biology, 129: 235 – 264.

13.    Yamamoto, Y., Kawahara, S., Chaikumpollert, O. and Nghia, P. T. (2013). Protein- free natural rubber, latex thereof, and method for manufacturing said rubber and US Patent 8476348 B2

14.    Kawahara, S., klinklai, W., Kuroda, H. and Isono, Y. (2004). Removal of proteins from natural rubber with urea. Polymer Advance Technology, 15:181 – 184.

15.    Rossky, P. J. (2008). Protein denaturation by urea: Slash and bond. PNAS, 105(44): 16825 – 16826.

16.    Canchi, D. R., Paschek, D. and García, A. E. (2010). Equilibrium study of protein denaturation by urea. Journal of the American Chemical Society, 132(7): 2338 – 2344.

17.    Bennion, B. J. and Daggett, V. (2003). The molecular basis for the chemical denaturation of proteins by urea. PNAS, 100 (9): 5142 – 5147.

18.    Ruiz, C. C. (1999). Micelle formation and microenvironmental properties of sodium dodecyl sulphate in aqueous urea solution Colloids and Surfaces A: Physicochemical and Engineering Aspects, 147: 349 – 357.

19.    Otzen, D. E. (2002). Protein unfolding in detergents: Effect of micelle structure, ionic strength, pH, and temperature. Biophysical Journal, 83: 2219 – 2230.

20.    Kemp, A. R. and Straitiff, W. G. (1940). Hevea Latex: Effect of proteins and electrolytes on colloidal behavior. Rubber Chemistry and Technology, 13(4): 705 – 721.

21.    Chen, S. F. (1981). Adsorption of sodium dodecyl sulfate on natural rubber latex particles and determination of specific surface area of the particles. Rubber Chemistry and Technology, 54(1): 124 – 133.

22.    Jacso, T., Bardiaux, B., Broecker, J., Fiedler, S., Baerwinkel, T., Mainz, A., Fink, U., Vargas, C., Oschkinat, H., Keller, S. and Reif, B. (2013). The mechanism of denaturation and the unfolded state of the α-helical membrane-associated protein Mistic. Journal of the American Chemical Society, 135(50): 18884 – 18891.

23.    Junoi, S., Chisti, Y. and Hansupalak, N. (2015). Optimal conditions for deproteinizing natural rubber using immobilized alkaline protease Journal of Chemical Technology and Biotechnology, 90: 185 – 193.

24.    Wei, L. K., Ing, W. K., Badri, K. H. and Ban, W. C. (2013). Formation of protein complex with the aid of polyethylene glycol for deproteinized natural rubber latex AIP Conference Proceedings 1571: 871

 




Previous                    Content                    Next