Malaysian Journal of Analytical Sciences Vol 20 No 5 (2016): 1225 - 1232

DOI: http://dx.doi.org/10.17576/mjas-2016-2005-29

 

 

 

SALTWATER INTRUSION ANALYSIS IN EAST COAST OF TERENGGANU USING MULTIVARIATE ANALYSIS

 

(Analisis Pencerobohan Air Masin di Kawasan Pantai Timur, Terengganu Menggunakan Analisis Multivariat)

 

Norsyuhada Hairoma1*, Muhd Barzani Gasim1,2, Azman Azid1,2, Haniff Muhamad1, Nur Hishaam Sulaiman1, Zuriati Khairuddin1, Ahmad Dasuki Mustafa1, Fazureen Azaman1, Muhammad Azizi Amran1

 

1East Coast Environmental Research Institute (ESERI),

 Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Terengganu, Terengganu, Malaysia

2Faculty Bioresources and Food Industry,

 Universiti Sultan Zainal Abidin, Tembila Campus, 22200 Besut, Terengganu, Malaysia

 

*Corresponding author: nsyuhadahairoma@gmail.com

 

 

Received: 14 April 2015; Accepted: 3 August 2016

 

 

Abstract

Coastal aquifer groundwater is vulnerable to saltwater contamination as it is located near the coastline. Therefore, a study is conducted to confirm all the major source of pollutants on coastal groundwater based on 13 sampling wells that located close to Terengganu coastline as well as to assess the intensity of saltwater intrusion into the wells. Measurements of selected water quality parameters such as dissolve oxygen (DO), electrical conductivity (EC), total dissolve solid (TDS), salinity, pH, turbidity and total suspended solid (TSS) were obtained from each well by using certified scientific instruments. Data were analysed by using multivariate techniques which involves principle component analysis (PCA) and cluster analysis (CA). CA was performed by using hierarchical agglomerative cluster analysis (HACA) technique. PCA yielded two PCs where PC1 forms composite factor loadings of TDS, salinity and EC that represented the saltwater intrusion meanwhile, PC2 formed composite factors of turbidity, TSS and TDS that represented the anthropogenic pollutions. CA successfully classified sampling wells into seven clusters; Extreme High (EH), Very High (VH), High (H), Moderate (M), Low (L), Very Low (VL) and Extreme Low (EL) where each cluster represented the saltwater intrusion intensity in decreasing order.

 

Keywords:  groundwater, coastal aquifer, saltwater intrusion, multivariate techniques

 

Abstrak

Air bawah tanah dari akuifer pantai terdedah kepada pencemaran air masin kerana ia terletak berhampiran pantai. Oleh itu, satu kajian dijalankan untuk mengesahkan sumber utama pencemaran kepada air bawah tanah pantai berdasarkan 13 telaga persampelan yang terletak berhampiran kawasan pantai Terengganu serta untuk menilai keamatan pencerobohan air masin ke dalam telaga.Pengukuran parameter kualiti air seperti oksigen terlarut (DO), kekonduksian elektrik (EC), jumlah pepejal terlarut (TDS), kemasinan, pH, kekeruhan dan jumlah pepejal terampai (TSS) diambil dari setiap telaga dengan menggunakan peralatan saintifik. Data dianalisis menggunakan teknik multivariat iaitu analisis komponen utama (PCA) dan analisis kelompok (CA). CA dilakukan menggunakan teknik analisis kelompok hierarki agglomeratif (HACA). PCA menghasilkan dua PC yang mana, PC1 membentuk faktor komposit TDS, kemasinan dan EC yang mewakili pencerobohan air masin manakala, PC2 membentuk faktor komposit kekeruhan, TSS dan TDS yang mewakili pencemaran antropogenik. CA berjaya mengelaskan telaga persampelan kepada tujuh kelompok; Tinggi Ekstrem (EH), Sangat Tinggi (VH), Tinggi (H), Sederhana (M), Rendah (L), Sangat Rendah (VL) dan Rendah Ekstrem (EL) yang mana setiap kelompok mewakili keamatan pencerobohan air masin dalam urutan berkurangan.

 

Kata kunci:  air bawah tanah, akuifer pantai, kemasukan air masin, teknik multivariat

 

References

1.       Che-Ani, A. I., Shaari, N., Sairi, A., Zain, M. F. M., and Tahir, M. M. (2009). Rainwater harvesting as an alternative water supply in the future. European Journal of Scientific Research 34(1): 132 – 140.

2.       Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., Treidel, H. and Aureli, A. (2011). Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 405: 532 – 560.

3.       Choudhury, K., Saha, D. K., and Chakraborty, P. (2001). Geophysical study for saline water intrusion in a coastal alluvial terrain. Journal of Applied Geophysics, 46(3): 189 – 200.

4.       Abdullah, M. H., Raveena, S. M., and Aris, A. Z. (2010). A numerical modelling of seawater intrusion into an oceanic island aquifer, Sipadan Island, Malaysia. Sains Malaysiana 39(4): 525 – 532.

5.       Werner, A. D., Bakker, M., Post, V. E. A., Vandenbohede, A., Lu, C., Ataie-ashtiani, B., Simmons, C. T., and Barry, D. A. (2013). Seawater intrusion processes, investigation and management: Recent advances and future challenges. Advances in Water Resources, 51: 3 – 26.

6.       Samsudin, A. R., Haryono, A., Hamzah, U. and Rafek, A. G. (2008). Salinity mapping of coastal groundwater aquifers using hydrogeochemical and geophysical methods: A case study from north Kelantan, Malaysia. Environmental Geology, 55(8): 1737 – 1743.

7.       Priyanka, B. N., and Mahesha, A. (2015). Parametric studies on saltwater intrusion into coastal aquifers for anticipate sea level rise. Aquatic Procedia, 4: 103 – 108.

8.       Abd-Elhamid, H. F. and Javadi, A. A. (2011). A density-dependant finite element model for analysis of saltwater intrusion in coastal aquifers. Journal of Hydrology, 401(3): 259 – 271.

9.       Yao-Dong, D., Xu-Hua, C., Xian-Wei, W., Hui, A., Hai-Lai, D., Jian, H. and Xiao-Xuan, W. (2013). A review of assessment and adaptation strategy to climate change impacts on the coastal areas in South China. Advances in Climate Change Research, 4(4): 201 – 207.

10.    Chang, S. W., Clement, T. P., Simpson, M. J. and Lee, K. K. (2011). Does sea-level rise have an impact on saltwater intrusion? Advances in Water Resources 34(10): 1283 – 1291.

11.    Tomaszkiewicz, M., Abou, N. M. and El-Fadel, M. (2014). Development of a groundwater quality index for seawater intrusion in coastal aquifers. Environmental Modelling & Software 57: 13 – 26.

12.    Gasim, M. B., Khalid, N. A., and Muhamad, H. (2015). The influence of tidal activities on water quality of Paka River Terengganu, Malaysia. Malaysian Journal of Analytical Sciences, 19(5): 979 – 990.

13.    Toriman, M. E., Gasim, M. B., Ariffin, N. H., Muhamad, H. and Hairoma, N. (2015). The influence of tidal activities on hydrologic variables of Marang River, Terengganu, Malaysia. Malaysian Journal of Analytical Sciences, 19(5): 1099 – 1108.

14.    Sharif, S. M., Kusin, F. M., Asha’ari, Z. H. and Aris, A. Z. (2015). Characterization of water quality conditions in the klang river basin, malaysia using self-organizing map and k-means algorithm. Procedia Environmental Sciences, 30: 73–78.

15.    Raj, J. K., Tan D. N., and Abdullah W. H. (2009). Cenozoic stratigraphy. In Geology of Peninsular Malaysia. Kuala Lumpur: University of Malaya: pp. 164 – 168.

16.    Hassan, K. B. (1989). Significance of palynology in late quaternary sediments in Peninsular Malaysia. Geological Society of Malaysia 24: 57 – 66.

17.    Saghravani, S. R., Yusoff, I., Wan Md Tahir, W. Z. and Othman, Z. (2015). Estimating recharge based on long-term groundwater table fluctuation monitoring in a shallow aquifer of Malaysian tropical rainforest catchment. Environmental Earth Sciences, 74(6): 4577 – 4587.

18.    Feseker, T. (2007). Numerical studies on saltwater intrusion in a coastal aquifer in Northwestern Germany. Hydrogeology Journal, 15(2): 267 – 279.

19.    Biglari, A. and Sutherland, J. C. (2015). An a-posteriori Evaluation of principal component analysis-based models for turbulent combustion simulations. Combust and Flame, 162(10): 4025 – 4035.

20.    Tantra, R., Oksel, C., Robinson, K. N., Sikora, A., Wang, X. Z. and Wilkins, T. A. (2015). A method for assessing nanomaterial dispersion quality based on principal component analysis of particle size distribution data. Particuology, 22: 30 – 38.

21.    Parente, A. and Sutherland, J. C. (2013). Principal component analysis of turbulent combustion data: Data pre-processing and manifold sensitivity. Combustion and Flame, 160(2): 340 – 350.

22.    Kasim, M. K., Juahir, H., Tawnie, I., Azid, A., Saudi, A.S.M., Samsudin, S., Toriman, M.E., Fazli, B.M., and Hasnam, C.N.C. (2015). Environmetric techniques application in water quality assessment: A case study in Linggi River basin. Jurnal Teknologi (Sciences & Engineering) 74(1): 151–157.

23.    Aminu Ibrahim, A., Juahir, H., Toriman, M.E., Mustapha, A., Azid, A. and Isiyaka, H.A. (2015). Assessment of surface water quality using multivariate statistical techniques in the Terengganu River basin.  Malaysian Journal of Analytical Sciences, 19(2): 338 – 348.

24.    Maritan, L., Holakooei, P. and Mazzoli, C. (2015). Cluster analysis of XRPD data in ancient ceramics: What for? Applied Clay Science, 114: 540 – 549.

25.    Shrestha, S. and Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan. Environmental Modelling & Software, 22(4): 464 – 475.

26.    Liu, C. W., Lin, K. H. and Kuo, Y. M. (2003). Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of the Total Environment. 313(1): 77 – 89.

27.    Mokhtar, M., Bahari, I., and Poon, A. (2001). Kualiti air di sekitar kawasan perindustrian Balakong, Lembangan Langat. Malaysian Journal of Analytical Sciences 7(1): 129 – 138.

 




Previous                    Content                    Next