Malaysian
Journal of Analytical Sciences Vol 20 No 5 (2016): 1225 - 1232
DOI:
http://dx.doi.org/10.17576/mjas-2016-2005-29
SALTWATER INTRUSION ANALYSIS IN EAST COAST OF
TERENGGANU USING MULTIVARIATE ANALYSIS
(Analisis Pencerobohan Air Masin di Kawasan Pantai
Timur, Terengganu Menggunakan Analisis Multivariat)
Norsyuhada Hairoma1*, Muhd Barzani Gasim1,2,
Azman Azid1,2, Haniff Muhamad1, Nur Hishaam Sulaiman1,
Zuriati Khairuddin1, Ahmad Dasuki Mustafa1, Fazureen
Azaman1, Muhammad Azizi Amran1
1East Coast Environmental Research Institute (ESERI),
Universiti Sultan Zainal Abidin, Gong Badak
Campus, 21300 Kuala Terengganu, Terengganu, Malaysia
2Faculty Bioresources and Food Industry,
Universiti Sultan Zainal Abidin, Tembila
Campus, 22200 Besut, Terengganu, Malaysia
*Corresponding author: nsyuhadahairoma@gmail.com
Received: 14
April 2015; Accepted: 3 August 2016
Abstract
Coastal
aquifer groundwater is vulnerable to saltwater contamination as it is located
near the coastline. Therefore, a study is conducted to confirm all the major
source of pollutants on coastal groundwater based on 13 sampling wells that
located close to Terengganu coastline as well as to assess the intensity of
saltwater intrusion into the wells. Measurements of selected water quality
parameters such as dissolve oxygen (DO), electrical conductivity (EC), total
dissolve solid (TDS), salinity, pH, turbidity and total suspended solid (TSS)
were obtained from each well by using certified scientific instruments. Data
were analysed by using multivariate techniques which involves principle component
analysis (PCA) and cluster analysis (CA). CA was performed by using
hierarchical agglomerative cluster analysis (HACA) technique. PCA yielded two
PCs where PC1 forms composite factor loadings of TDS, salinity and EC that
represented the saltwater intrusion meanwhile, PC2 formed composite factors of
turbidity, TSS and TDS that represented the anthropogenic pollutions. CA successfully
classified sampling wells into seven clusters; Extreme High (EH), Very High (VH),
High (H), Moderate (M), Low (L), Very Low (VL) and Extreme Low (EL) where each
cluster represented the saltwater intrusion intensity in decreasing order.
Keywords: groundwater, coastal aquifer, saltwater
intrusion, multivariate techniques
Abstrak
Air
bawah tanah dari akuifer pantai terdedah kepada pencemaran air masin kerana ia
terletak berhampiran pantai. Oleh itu, satu kajian dijalankan untuk mengesahkan
sumber utama pencemaran kepada air bawah tanah pantai berdasarkan 13 telaga
persampelan yang terletak berhampiran kawasan pantai Terengganu serta untuk
menilai keamatan pencerobohan air masin ke dalam telaga.Pengukuran parameter
kualiti air seperti oksigen terlarut (DO), kekonduksian elektrik (EC), jumlah
pepejal terlarut (TDS), kemasinan, pH, kekeruhan dan jumlah pepejal terampai (TSS)
diambil dari setiap telaga dengan menggunakan peralatan saintifik. Data
dianalisis menggunakan teknik multivariat iaitu analisis komponen utama (PCA)
dan analisis kelompok (CA). CA dilakukan menggunakan teknik analisis kelompok
hierarki agglomeratif (HACA). PCA menghasilkan dua PC yang mana, PC1 membentuk
faktor komposit TDS, kemasinan dan EC yang mewakili pencerobohan air masin
manakala, PC2 membentuk faktor komposit kekeruhan, TSS dan TDS yang mewakili
pencemaran antropogenik. CA berjaya mengelaskan telaga persampelan kepada tujuh
kelompok; Tinggi Ekstrem (EH), Sangat Tinggi (VH), Tinggi (H), Sederhana (M), Rendah
(L), Sangat Rendah (VL) dan Rendah Ekstrem (EL) yang mana setiap kelompok
mewakili keamatan pencerobohan air masin dalam urutan berkurangan.
Kata kunci: air bawah tanah, akuifer pantai, kemasukan air
masin, teknik multivariat
References
1.
Che-Ani, A. I., Shaari, N., Sairi, A., Zain,
M. F. M., and Tahir, M. M. (2009). Rainwater harvesting as an alternative water
supply in the future. European Journal of
Scientific Research 34(1): 132 – 140.
2.
Green, T. R., Taniguchi, M., Kooi, H., Gurdak,
J. J., Allen, D. M., Hiscock, K. M., Treidel, H. and Aureli, A. (2011). Beneath
the surface of global change: Impacts of climate change on groundwater. Journal
of Hydrology, 405: 532 – 560.
3.
Choudhury, K., Saha, D. K., and Chakraborty,
P. (2001). Geophysical study for saline water intrusion in a coastal alluvial
terrain. Journal of Applied Geophysics, 46(3): 189 – 200.
4.
Abdullah, M. H., Raveena, S. M., and Aris, A.
Z. (2010). A numerical modelling of seawater intrusion into an oceanic island
aquifer, Sipadan Island, Malaysia. Sains Malaysiana 39(4): 525 – 532.
5.
Werner, A. D., Bakker, M., Post, V. E. A.,
Vandenbohede, A., Lu, C., Ataie-ashtiani, B., Simmons, C. T., and Barry, D. A.
(2013). Seawater intrusion processes, investigation and management: Recent
advances and future challenges. Advances
in Water Resources, 51: 3 – 26.
6.
Samsudin, A. R., Haryono, A., Hamzah, U. and
Rafek, A. G. (2008). Salinity mapping of coastal groundwater aquifers using
hydrogeochemical and geophysical methods: A case study from north Kelantan,
Malaysia. Environmental Geology, 55(8):
1737 – 1743.
7.
Priyanka, B. N., and Mahesha, A. (2015).
Parametric studies on saltwater intrusion into coastal aquifers for anticipate
sea level rise. Aquatic Procedia, 4:
103 – 108.
8.
Abd-Elhamid, H. F. and Javadi, A. A. (2011). A
density-dependant finite element model for analysis of saltwater intrusion in
coastal aquifers. Journal of Hydrology, 401(3): 259 – 271.
9.
Yao-Dong, D., Xu-Hua, C., Xian-Wei, W., Hui,
A., Hai-Lai, D., Jian, H. and Xiao-Xuan, W. (2013). A review of assessment and
adaptation strategy to climate change impacts on the coastal areas in South
China. Advances in Climate Change
Research, 4(4): 201 – 207.
10.
Chang, S. W., Clement, T. P., Simpson, M. J. and
Lee, K. K. (2011). Does sea-level rise have an impact on saltwater intrusion? Advances
in Water Resources 34(10):
1283 – 1291.
11.
Tomaszkiewicz, M., Abou, N. M. and El-Fadel,
M. (2014). Development of a groundwater quality index for seawater intrusion in
coastal aquifers. Environmental Modelling & Software 57: 13 – 26.
12.
Gasim, M. B., Khalid, N. A., and Muhamad, H.
(2015). The influence of tidal activities on water quality of Paka River
Terengganu, Malaysia. Malaysian Journal
of Analytical Sciences, 19(5): 979 – 990.
13.
Toriman, M. E., Gasim, M. B., Ariffin, N. H.,
Muhamad, H. and Hairoma, N. (2015). The influence of tidal activities on hydrologic
variables of Marang River, Terengganu, Malaysia. Malaysian Journal of Analytical Sciences, 19(5): 1099 – 1108.
14.
Sharif, S. M., Kusin, F. M., Asha’ari, Z. H. and
Aris, A. Z. (2015). Characterization of water quality conditions in the klang river
basin, malaysia using self-organizing map and k-means algorithm. Procedia Environmental Sciences, 30:
73–78.
15.
Raj, J. K., Tan D. N., and Abdullah W. H.
(2009).
Cenozoic stratigraphy. In Geology of
Peninsular Malaysia. Kuala Lumpur: University of Malaya: pp. 164 – 168.
16.
Hassan, K. B. (1989). Significance of palynology
in late quaternary sediments in Peninsular Malaysia. Geological Society of
Malaysia 24: 57 – 66.
17.
Saghravani, S. R., Yusoff, I., Wan Md Tahir,
W. Z. and Othman, Z. (2015). Estimating recharge based on long-term groundwater
table fluctuation monitoring in a shallow aquifer of Malaysian tropical
rainforest catchment. Environmental Earth Sciences, 74(6): 4577 – 4587.
18.
Feseker, T. (2007). Numerical studies on
saltwater intrusion in a coastal aquifer in Northwestern Germany. Hydrogeology
Journal, 15(2): 267 – 279.
19.
Biglari, A. and Sutherland, J. C. (2015). An a-posteriori
Evaluation of principal component analysis-based models for turbulent
combustion simulations. Combust and Flame, 162(10): 4025 – 4035.
20.
Tantra, R., Oksel, C., Robinson, K. N.,
Sikora, A., Wang, X. Z. and Wilkins, T. A. (2015). A method for assessing
nanomaterial dispersion quality based on principal component analysis of
particle size distribution data. Particuology, 22: 30 – 38.
21.
Parente, A. and Sutherland, J. C. (2013).
Principal component analysis of turbulent combustion data: Data pre-processing
and manifold sensitivity. Combustion and Flame, 160(2): 340 – 350.
22.
Kasim, M. K., Juahir, H., Tawnie, I., Azid,
A., Saudi, A.S.M., Samsudin, S., Toriman, M.E., Fazli, B.M., and Hasnam, C.N.C.
(2015). Environmetric techniques application in water quality assessment: A
case study in Linggi River basin. Jurnal
Teknologi (Sciences & Engineering) 74(1): 151–157.
23.
Aminu Ibrahim, A., Juahir, H., Toriman, M.E.,
Mustapha, A., Azid, A. and Isiyaka, H.A. (2015). Assessment of surface water
quality using multivariate statistical techniques in the Terengganu River basin. Malaysian
Journal of Analytical Sciences, 19(2): 338 – 348.
24.
Maritan, L., Holakooei, P. and Mazzoli, C.
(2015). Cluster analysis of XRPD data in ancient ceramics: What for? Applied
Clay Science, 114: 540 – 549.
25.
Shrestha, S. and Kazama, F. (2007). Assessment
of surface water quality using multivariate statistical techniques: A case
study of the Fuji river basin, Japan. Environmental
Modelling & Software, 22(4): 464 – 475.
26.
Liu, C. W., Lin, K. H. and Kuo, Y. M. (2003).
Application of factor analysis in the assessment of groundwater quality in a
blackfoot disease area in Taiwan. Science
of the Total Environment. 313(1): 77 – 89.
27.
Mokhtar, M., Bahari, I., and Poon, A. (2001).
Kualiti air di sekitar kawasan perindustrian Balakong, Lembangan Langat. Malaysian Journal of Analytical Sciences
7(1): 129 – 138.