Malaysian Journal of Analytical Sciences Vol 20 No 5 (2016): 986 - 1000

DOI: http://dx.doi.org/10.17576/mjas-2016-2005-03

 

 

 

DETERMINATION OF OPTIMUM CONDITIONS AND STABILITY STUDY OF BIOSURFACTANT PRODUCED BY Bacillus subtilis UKMP-4M5

 

(Penentuan Keadaan Optimum dan Kajian Kestabilan Biosurfaktan yang Dihasilkan oleh Bacillus subtilis UKMP-4M5)

 

Ummul Khair Mohd Syahriansyah and Ainon Hamzah*

 

School of Biosciences and Biotechnology, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

*Corresponding author: ainonh@gmail.com

 

 

Received: 29 January 2016; Accepted: 17 June 2016

 

 

Abstract

Bacillus subtilis UKMP-4M5 was isolated from a hydrocarbon contaminated site which was found to be the most potential biosurfactant producer. Isolates were grown in a mineral salt medium (MSM) supplemented with sunflower oil (1% v/v) as the main carbon source. Screening was based on both qualitative (oil spreading technique) and quantitative (emulsification index and surface tension measurement) methods. B. subtilis UKMP-4M5 produced the highest oil displacement activity with and emulsification index of 17%. It also reduced surface tension of culture medium from 58.95 to 41.75 mN/m. B. subtilis UKMP-4M5 produced biosurfactant with surface tension measurement of 32.7 ± 0.66 mN/m using 2% (v/v) palm oil and 0.5% (w/v) yeast extract as carbon and nitrogen sources respectively. The tested biosurfactant exhibited excellent thermal (up to 120 °C) and pH (6.0 – 8.0) stability as well as high tolerance for varying salt concentrations (1 – 5% w/v) in terms of surface tension reducing ability. This suggests potential applications in fields such as enhanced oil recovery, bioremediation, and the food industry.

 

Keywords:  Bacillus subtilis, biosurfactant, palm oil, surface tension

 

Abstrak

Bacillus subtilis UKMP-4M5 yang dipencilkan dari kawasan yang tercemar dengan hidrokarbon didapati paling berpotensi sebagai penghasil biosurfaktan. Pencilan dihidupkan di dalam medium garam mineral (MSM) yang ditambahkan dengan 1% (i/i) minyak bunga matahari sebagai sumber karbon utama. Penyaringan adalah berdasarkan kepada kedua-dua kaedah kualitatif (teknik penyebaran minyak) dan kuantitatif (indeks emulsifikasi dan ukuran ketegangan permukaan). B. subtilis UKMP-4M5 merekodkan aktiviti sesaran minyak yang tertinggi dengan indeks emulsifikasi sebanyak 17%. Ia juga merendahkan ketegangan permukaan kultur medium dari 58.95 mN/m ke 41.75 mN/m B. subtilis UKMP-4M5 menghasilkan biosurfaktan dengan ukuran ketegangan permukaan 32.7 ± 0.66 mN/m menggunakan 2% (i/i) minyak kelapa sawit dan 0.5% (b/i) ekstrak yis masing-masing sebagai sumber karbon dan nitrogen. Biosurfaktan yang diuji menunjukkan kestabilan yang amat baik pada suhu (sehingga 120 °C) dan pH (6.0 – 8.0) serta toleransi yang tinggi pada kepekatan garam yang berbeza (1 – 5% b/i) dari segi keupayaannya merendahkan ketegangan permukaan. Ini mencadangkan potensi aplikasinya dalam industri seperti peningkatan perolehan minyak, bioremediasi dan industri makanan.

 

Kata kunci:  Bacillus subtilis, biosurfaktan, minyak kelapa sawit, ketegangan permukaan

 

References

1.       Muthusamy, K., Gopalakrishnan, S., Ravi, T. K. and Sivachidambaram, P. (2008). Biosurfactants: Properties, commercial production and application. Current Science, 94(6): 736 – 747.

2.       Kim, P. I. I., Ryu, J., Kim, Y. H. and Chi, Y-T. (2010). Production of biosurfactant lipopeptides iturin A, fengycin, and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. Journal of Microbiology and Biotechnology, 20(1): 138 – 145.

3.       Lee, S-C., Kim, S-H., Park, I-H., Chung, S-Y., Chandra, M. S. and Choi, Y-L. (2010). Isolation, purification, and characterization of novel fengycin S from Bacillus amyloliquefaciens LSC04 degrading crude oil. Biotechnology and Bioprocess Engineering, 15: 246 – 253.

4.       Chander, C. R. S., Lohitnath, T., Kumar, D. J. M. and Kalaichelvan, P. T. (2012). Production and characterization of biosurfactant from Bacillus subtilis MTCC441 and its evaluation to use as bioemulsifier for food bio-preservative. Advances in Applied Science Research, 3(3): 1827 – 1831.

5.       Simmai, A., Rukadee, O., Sohbon, V. and Manerat, S. (2012). Biosurfactant production by Bacillus subtilis TD4 and Pseudomonas aeruginosa SU7 grown on crude glycerol obtained from biodiesel production plant as sole carbon source. Journal of Scientific and Industrial Research, 71: 396 – 406.

6.       Nalini, S., Parthasarathi, R. and Thandapani, C.M. (2013). Isolation, screening and characterization of bio-surfactant produced by Bacillus sp. from automobile oil contaminated soil. International Journal of Pharmaceutical & Biological Archives, 4(1): 130 – 135.

7.       Abdel-Mawgoud, A. M., Aboulwafa, M. M. and Hassouna, N. A. H. (2008). Characterization of surfactin produced by Bacillus subtilis isolate BS5. Applied Biochemistry and Biotechnology, 150(3): 289 – 303.

8.       El-Sersy, N.A. (2012). Plackett-Burman design to optimize biosurfactant production by marine Bacillus subtilis N10. Romanian Biotechnological Letter, 17(2): 7049 – 7064.

9.       Hamzah A., Rabu, A., Azmy, R. F. H. R. and Yussoff, N. A. (2010). Isolation and characterization of bacteria degrading sumandak and South and Angsi oils. Sains Malaysiana, 39(2): 161 – 168.

10.    Zajic, E. and Supplison, B. (1972). Emulsification and degradation of “Bunker C” fuel oil by microorganisms. Biotechnology and Bioengineering, 14: 331 – 334.

11.    Youssef, N. H., Duncan, K. E., Nagle, D. P., Savage, K. N., Knapp, R. M. and Mcinerney, M. J. (2004). Comparison of methods to detect biosurfactant production by diverse microorganisms. Journal of Microbiological Methods, 56: 339 – 347.

12.    Cooper, D. and Goldenberg, B. (1987). Surface-active agents from two Bacillus species. Applied Environmental Microbiology, 53(2): 224 – 229.

13.    Bodour, A. A. and Miller-Maier, R. M. (1998). Application of a modified drop-collapse technique from surfactant quantitation and screening of biosurfactant-producing microorganisms. Journal of Microbiological Methods, 32: 273 – 280.

14.    Techaoei, S., Lumyong, S., Prathumpai, W., Santiarwarn, D. and Leelapornspisid, P. (2011). Screening characterization and stability of biosurfactant produced by Pseudomonas aeruginosa SCMU106 isolated from soil in Northern Thailand. Asian Journal of Biological Sciences, 4(4): 340 – 351.

15.    Hamzah, A., Sabturani, N. and Radiman, S. (2013). Screening and optimization of biosurfactant production by the hydrocarbon-degrading bacteria. Sains Malaysiana, 42(5): 615 – 623.

16.    Varjani, S. J., Rana, D. P., Bateja, S., Sharma, M. C. and Upasani, V. N. (2014). Screening and identification of biosurfactant (bioemulsifier) producing bacteria from crude oil contaminated sites of Gujarat India. International Journal of Innovative Research in Science, Engineering and Technology, 3(2): 9205 – 9213.

17.    Morikawa, M., Hirata, Y. and Imanaka, T. (2000). A study on the structure-function relationship of lipopeptide biosurfactant. Biochemical and Biophysics Acta, 1488(3): 211 – 218.

18.    Thavasi, R., Sharma, S. and Jayalakshmi, S. (2011). Evaluation of screening methods for the isolation of biosurfactant producing marine bacteria. Journal of Petroleum and Environmental Biotechnology. S1: 1 – 6.

19.    Karthik, L., Kumar, G. and Rao, K.V.B. (2010). Comparison of methods and screening of biosurfactant producing marine actinobacteria isolated from Nicobar marine sediment. The IIOAB Journal, 9(2): 34 – 38.

20.    Shoeb, E., Ahmed, N., Akhter, J., Badar, U., Siddiqui, K., Ansari, F. A., Waqar, M., Imtiaz, S., Akhtar, N., Shaikh, Q. A., Baig, R., Butt, S., Khan, S., Khan, S., Hussain, S., Ahmed, B. and Ansari, M. (2015). Screening and characterization of biosurfactant-producing bacteria isolated from the Arabian Sea coast of Karachi. Turkish Journal of Biology. 39: 210 – 216.

21.    Nishanthi, R., Kumaran, S., Palani, P., Chellaram, C., Anan, T. P. and Kannan, V. (2011). Screening of biosurfactants from hydrocarbon degrading bacteria. Journal of Ecobiotechnology. 2(5): 47 –  53.

22.    Viramontes-Ramos, S., Portillo-Ruiz, M. C., Ballinas-Casarrubias, M. L., Torres-Munoz, J.V., Rivera-Chavira, B. E. and Nevarez-Moorillon, G.V. (2010). Selection of biosurfactant/bioemulsifier-producing bacteria from hydrocarbon-contaminated soil. Brazilian Journal of Microbiology, 41: 668 – 675.

23.    Safary, A., Ardakani, M. R., Suraki, A. A., Khiavi, M. A. and Motamedi, H. (2010). Isolation and characterization of biosurfactant producing bacteria from Caspian Sea. Biotechnology, 9(3): 378 – 382.

24.    Cerqueira dos Santos, S., Fernandez, L. G., Rossi-Alva, J. C. and de Abreu Roque, M. R. (2010). Evaluation of substrates from renewable-resources in biosurfactants production by Pseudomonas strains. African Journal of Biotechnology, 9(35): 5704 – 5711.

25.    Haba, E., Espuny, M. J., Busquets, M. and Manresa, A. (2000). Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. Journal of Applied Microbiology. 88: 379 – 387.

26.    Ferraz, C., De Araujo, A. A. and Pastore, G. M. (2002). The influence of vegetable oils on biosurfactant production by Serratia marcescens. Applied Biochemistry and Biotechnology, 98(1): 841 – 847.

27.    Jadhav, M., Kagaikar, A., Jadhav, S. and Govindwar, S. (2011). Isolation, characterization and antifungal application of a biosurfactant produced by Enterobacter sp. MS16. European Journal of Lipid, Science and Technology, 113(11): 1347 – 1358.

28.    Banat, I. M., Satpute, S. K., Cameotra, S. S., Patil, R. and Nyayanit, N. V. (2014). Cost effective technologies and renewable substrates for biosurfactants’ production. Frontier in Microbiology, 5: 697 – 715.

29.    Ghojavand, H., Vahabzadeh, F., Roayaei, E. and Shahraki, A. K. (2008). Production and properties of a biosurfactant obtained from a member of the Bacillus subtilis group (PTCC 1696). Journal of Colloid and Interface Science. 324: 172 – 176.

30.    Joshi, S. J., Suthar, H., Yadav, A. K., Kingurao, K. and Nerurkar, A. (2013). Occurrence of biosurfactant producing Bacillus spp. in diverse habitats. ISRN Biotechnology, 2013: 1 – 6.

31.    Pereira, J. F. B., Gudina, E. J., Costa, R., Vitorino, R., Teixeira, J. A., Coutinho, J. A. P. and Rodrigues, L. R. (2013). Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel, 111: 259 – 268.

32.    Haddad, N. I. A., Wang, J. and Mu, B. (2009). Identification of a biosurfactant producing strain: Bacillus subtilis HOB2. Protein and Peptide Letters. 16: 7 - 13.

33.    Abas, M. R., Kader, A. J. A., Khalil, M. S., Hamid, A. A. and Isa, M. H. M. (2013). Production of surfactin from Bacillus subtilis ATCC 21332 by using treated palm oil mill effluent (POME) as fermentation media. International Conference on Food and Agricultural Sciences, 55: 87 – 93.

34.    Pornsunthorntawee, O., Arttaweeporn, N., Paisanjit, S., Somboonthanate, P., Abe, M., Rujiravanit, R. and Chavadej, S. (2008). Isolation and comparison of biosurfactants produced by Bacillus subtilis PT2 and Pseudomonas aeruginosa SP4 for microbial surfactant-enhanced oil recovery. Biochemical Engineering Journal, 42: 172 – 179.

35.    Jazeh, G., Forghani, F. and Oh, D-H. (2012). Biosurfactant production by Bacillus sp. isolated from petroleum contaminated soils of Sirri Island. American Journal of Applied Sciences, 9(1): 1 – 6.

36.    Li, A-H., Xu, M-Y., Sun, W. and Sun, G-P. (2010). Rhamnolipid production by Pseudomonas aeruginosa GIM 32 using different substrates including molasses distillery wastewater. Applied Biochemistry and Biotechnology, 163(5): 600 – 611.

37.    Oliveira, F.J.S., Vazquez, L., Campos, N.P. and Franca, F.P. (2007). Biosurfactant production by Pseudomonas aeruginosa RF using palm oil. Applied Biochemistry and Biotechnology, 129 – 132: 727 – 737.

38.    Abalos, A., Vinas, M., Sabate, J., Manresa, M. A. and Solanas, A. M. (2004). Enhanced biodegradation of Casablanca crude oil by a microbial consortium in presence of a rhamnolipid produced by Pseudomonas aeruginosa AT10. Biodegradation, 15: 249 – 260.

39.    Thaniyavarn, J., Chongchin, A., Wanitsuksombut, N., Thaniyavarn, S., Pinphanichakarn, P., Leepipatpiboon, N., Morikawa, M. and Kanaya, S. (2006). Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source. Journal of General Applied Microbiology, 52: 215 – 222.

40.    Fontes, G. C., Amaral, P. F. F., Nele, M. and Coelho, M. A. Z. (2010). Factorial design to optimize biosurfactant production by Yarrowia lipolytica. Journal of Biomedicine and Biotechnology, 2010: 1 – 8.

41.    Fonseca, R. R., Silva, A. J. R., De Franca, F. P., Cardoso, V. L. and Servulo, E. F. C. (2007). Optimizing carbon/nitrogen ratio for biosurfactant production by a Bacillus subtilis strain. Applied Biochemistry and Biotechnology. 137(1): 471 – 486.

42.    Nawawi, W. M. W., Jamal, P. and Alam, M. Z. (2010). Utilization of sludge palm oil as a novel substrate for biosurfactant production. Bioresource Technology, 101: 9241 – 9247.

43.    Vedaraman, N. and Venkatesh, N. (2011). Production of surfactin by Bacillus subtilis MTCC 2423 from waste frying oils. Brazilian Journal of Chemical Engineering. 28(02): 175 – 180.

44.    Rashedi, H., Azadi, M. M., Jamshidi, E. and Bonakdarpour, B. (2006). Production of rhamnolipids by Pseudomonas aeruginosa growing on carbon sources. International Journal of Environmental Science and Technology, 3(3): 297 – 303.

45.    Vaz, D. A., Gudina, E. J., Alameda, E. J., Teixeira, J. A. and Rodrigues, L. R. (2012). Performance of a biosurfactant produced by a Bacillus subtilis strain isolated from crude oil samples as compared to commercial chemical surfactants. Colloids and Surfaces B:Biointerfaces, 89: 167 – 174.

46.    Khopade, A., Biao, R., Liu, X., Mahadik, K., Zhang, L. and Kokare, C. (2012). Production and stability studies of the biosurfactant isolated from marine Nocardiopsis sp. B4. Desalination. 285: 198 – 204.

47.    Bognolo, G. (1999). Biosurfactants as emulsifying agents for hydrocarbons. Colloids Surfaces A: Physicochemical Engineering Aspects. 152(1): 41 – 52.

 




Previous                    Content                    Next