Malaysian Journal of Analytical Sciences Vol 20 No 5 (2016): 978 - 985

DOI: http://dx.doi.org/10.17576/mjas-2016-2005-02

 

 

 

IMMOBILIZATION OF TYROSINASE IN Nanocrystalline Cellulose/Chitosan Composite Film for AMPEROMETRIC DETECTION OF PHENOL

 

(Pemegunan Tyrosinase dalam Filem Komposit Selulosa Nanokristalin/Kitosan untuk Pengesanan Amperometrik bagi Fenol)

 

Fariza Aina Abd Manan1, Jaafar Abdullah1,2*, Nur Nadziera Nazri1, Izyan Nadira Abd Malik1, Nor Azah Yusof1,2, Ishak Ahmad3

 

1Department of Chemistry, Faculty of Science

2Institute of Advanced Technology

Universiti Putra Malaysia,43400 UPM Serdang, Selangor, Malaysia

3School of Chemical Sciences and Food Technology, Faculty of Sciences and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: jafar@upm.edu.my

 

 

Received: 17 August 2015; Accepted: 17 June 2016

 

 

Abstract

Nanocrystalline cellulose (NCC)/chitosan composite for immobilization of tyrosinase enzyme for the determination of phenol have been developed. The NCC/Chitosan composite film on screen printed carbon electrode (SPCE) was prepared by using drop casting technique. Characterization of the modified SPCE surface was investigated by using Transmission Electron Microscopy (TEM) and Fourier Transform Infrared (FTIR), respectively. Chronoamperometric (CA) technique is used to perform the electrochemical measurements. The detection of phenols by the developed system is derived on the direct electrochemical reduction of quinones produced by enzymatic reaction. The results demonstrated that the maximum response was observed at ratio of NCC/chitosan of 1 to 1 (v/v), tyrosinase concentration of 10 mg/mL and pH buffer of 7, respectively. It was found that the developed system gave linear response in the phenol concentration range of 0.39 – 7.74 µM (slope = 28.316, R2 = 0.9808) with the detection limit of 0.38 µM. The reproducibility of the system was also estimated and the Relative Standard Deviation (RSD) was found to be at 4.27%.

 

Keywords:  nanocrystalline cellulose, nanocomposite, immobilization, electrochemical, phenol

 

Abstrak

Komposit selulosa nanokristalin/kitosan untuk pemegunan enzim tirosinase bagi penentuan fenol telah dibangunkan. Filem komposit NCC/Chitosan di atas elektod karbon skrin bercetak (SPCE) telah disediakan melalui kaedah penyalutan acuan. Pencirian permukaan SPCE dimodifikasi dikaji menggunakan Mikroskop Elektron Transmisi (TEM) dan Transformasi Fourier Inframerah (FTIR). Teknik kronoamperometri (CA) digunakan untuk menjalankan pengukuran elektrokimia. Pengesanan fenol oleh sistem yang dibangunkan ini adalah berasaskan penurunan langsung elektrokimia oleh kuinon yang dihasilkan daripada tindak balas enzim. Keputusan menunjukkan bahawa rangsangan maksimum diperhatikan pada nisbah NCC/kitosan adalah 1 kepada 1 (v/v), kepekatan tirosinase 10 mg/mL dan larutan penimbal pada pH 7. Didapati bahawa sistem yang dibangunkan memberi rangsangan linear dalam julat kepekatan fenol 0.39-7.74 µM (kecerunan = 28.316, R2 = 0.9808) dengan had pengesanan 0.38 µM.  Kebolehulangan sistem juga telah dianggarkan dan nilai sisihan piawai relatif (RSD) yang diperolehi ialah  4.27%.

 

Kata kunci:  selulosa nanokristalin, nanokomposit, pemegunan, elektrokimia, fenol

 

References

1.       Lin, N. and Dufresne, A. (2014). Nanocellulose in biomedicine: Current status and future prospect. European Polymer Journal, 59: 302 – 325.

2.       Revol, J.-F., Bradford, H., Giasson, J., Marchessault, R. H. and Gray, D. G., (1992). Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. International Journal of Biological Macromolecules, 14: 170 – 172.

3.       Zhang, X., Huang, J., Chang, P. R., Li, J., Chen, Y., Wang, D. and Chen, J. (2010). Structure and properties of polysaccharide nanocrystal-doped supramolecular hydrogels based on cyclodextrin inclusion. Polymer, 51 (19): 4398 – 4407.

4.       Mahmoud, K. A., Male, K. B., Hrapovic, S. and Luong, J. H. (2009). Cellulose nanocrystal/gold nanoparticle composite as a matrix for enzyme immobilization. ACS applied materials & interfaces, 1 (7), 1383 – 1386.

5.       Lam, E., Male, K. B., Chong, J. H., Leung, A. C. W. and Luong, J. H. T. (2012). Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends in Biotechnology, 30(5), 283 – 290.

6.       Hamad, W. (2006). On the development and applications of cellulosic nanofibrillar and nanocrystalline materials. The Canadian Journal of Chemical Engineering, 84 (5): 513 – 519.

7.       Khan, A., Khan, R. A., Salmieri, S., Le Tien, C., Riedl, B., Bouchard, J. and Lacroix, M. (2012). Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers, 90 (4): 1601 – 1608.

8.       Abdullah, J., Ahmad, M., Heng, L. Y., Karuppiah, N. and Sidek, H. (2006). Chitosan-based tyrosinase optical phenol biosensor employing hybrid nafion/sol–gel silicate for MBTH immobilization. Talanta, 70 (3), 527 – 532.

9.       Dutta, P. K., Dutta, J. and Tripathi, V. (2004). Chitin and chitosan: Chemistry, properties and applications. Journal of Scientific and Industrial Research, 63 (1): 20 – 31.

10.    Azizi Samir, M. A. S., Alloin, F. and Dufresne, A. (2005). Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules, 6 (2): 612 – 626.

11.    Li, Q. and Renneckar, S. (2011). Supramolecular structure characterization of molecularly thin cellulose I nanoparticles. Biomacromolecules, 12 (3): 650 – 659.

12.    Nikonenko, N., Buslov, D., Sushko, N. and Zhbankov, R. (2005). Spectroscopic manifestation of stretching vibrations of glycosidic linkage in polysaccharides. Journal of Molecular Structure, 752 (1), 20 – 24.

13.    Cao, X., Dong, H. and Li, C. M. (2007). New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromolecules, 8 (3), 899 – 904.

14.    Khan, R. A., Salmieri, S., Dussault, D., Uribe-Calderon, J., Kamal, M. R., Safrany, A., and Lacroix, M. (2010). Production and properties of nanocellulose-reinforced methylcellulose-based biodegradable films. Journal of Agricultural and Food Chemistry, 58 (13): 7878 – 7885.

15.    Švitel, J. and Miertuš, S. (1998). Development of tyrosinase-based biosensor and its application for monitoring of bioremediation of phenol and phenolic compounds. Environmental Science & Technology, 32 (6): 828 – 832.

16.    Cao, S. L., Li, X. H., Lou, W. Y. and Zong, M. H. (2014). Preparation of a novel magnetic cellulose nanocrystal and its efficient use for enzyme immobilization. Journal of Material Chemistry B, (2): 5522 – 5530.

17.    Wang, G., Xu, J.-J., Ye, L.-H., Zhu, J.-J. and Chen, H.-Y. (2002). Highly sensitive sensors based on the immobilization of tyrosinase in chitosan. Bioelectrochemistry, 57 (1): 33 – 38.

 




Previous                    Content                    Next