Malaysian Journal of Analytical Sciences Vol 20 No 5 (2016): 1011 - 1019

DOI: http://dx.doi.org/10.17576/mjas-2016-2005-05

 

 

 

SINTESIS DAN PENCIRIAN HIDROGEL BERASASKAN KANJI DARIPADA UBI GADONG DENGAN MENGGUNAKAN TEKNIK RADIASI GAMMA

 

(Synthesis and Characterization of Starch-Based Hydrogel by using Gamma Radiation Technique)

 

Boo Wei Ping dan Azwan Mat Lazim*

 

Program Sains Kimia, Pusat Pengajian Sains Kimia dan Teknologi Makanan,

Fakulti Sains dan Teknologi,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Pengarang utama: azwanlazim@ukm.edu.my

 

 

Received: 13 August 2015; Accepted: 11 April 2016

 

 

Abstrak

Hidrogel berasaskan kanji daripada ubi gadong dengan menggunakan teknik radiasi gamma telah disintesis dan pencirian terhadapnya telah dilakukan bagi mendapatkan hidrogel yang terbaik. Hidrogel berasaskan kanji ini dihasilkan dengan menggunakan asid akrilik (AA) sebagai monomer dan kanji ubi gadong sebagai ko-monomer. Teknik radiasi gamma telah digunakan sebagai agen penaut silang. Isipadu ubi gadong yang berlainan digunakan untuk menghasilkan hidrogel dengan nisbah asid akrilik (AA) kepada ubi gadong. Hidrogel dengan nisbah 4:1 dan 5:2 telah disintesis. Tindak balas yang terlibat ialah pempolimeran radikal bebas dengan menggunakan radiasi gamma. Ujian pengembangan telah dilakukan untuk menguji sensitiviti hidrogel terhadap perubahan pH. Analisis morfologi hidrogel dilakukan dengan menjalani analisis Mikroskopi Pengimbasan Elektron (SEM). Analisis struktur kimia hidrogel ditentukan oleh Spektroskopi Inframerah (IR). Pembelauan Sinar X (XRD) dijalankan bagi menunjukkan hidrogel mengandungi komponen amorfus. Kalorimetri Pengimbasan Perbezaan (DSC) dan Analisis Gravimetri Terma (TGA) dijalankan bagi menunjukkan kestabilan terma hidrogel yang disintesis. Ujian pembengkakan telah dijalankan di dalam larutan penimbal pH 3, 5, 7, 9 dan 12 pada suhu bilik. Dalam larutan penimbal 7, 9 dan 12, didapati bahawa hidrogel bernisbah 5:2 mempunyai nilai yang lebih tinggi berbanding dengan hidrogel bernisbah 4:1. Manakala di dalam larutan penimbal pH 3 dan 5 pula, hidrogel bernisbah 4:1 mempunyai nilai pengembangan yang lebih tinggi berbanding hidrogel bernisbah 5:2. Puncak pada Spektrum Inframerah membuktikan kehadiran kumpulan berfungsi –OH daripada kanji berkurangan kerana telah digunakan dalam proses pempolimeran. Daripada termogram DSC dan TGA dapat diperhatikan bahawa nilai peralihan kaca, Tg untuk hidrogel bernisbah 5:2 lebih tinggi berbanding dengan hidrogel bernisbah 4:1.

 

Kata kunci:  hidrogel, kanji, ubi gadong, teknik radiasi gamma

 

Abstract

Starch-based hydrogel is synthesized using gamma radiation. The hydrogel is then characterized to obtain the best ratio of hydrogel. Starch-grafted-acrylic acid hydrogels is produced using acrylic acid as monomer and starch from gadong tuber as co-monomer. Gamma radiation is used as cross-linking agent. Different volume of starch is used to produce hydrogels with different ratios of acrylic acid (AA) to starch. Hydrogels with ratio of 4:1 and 5:2 are synthesized. The reaction involved in the synthesis of hydrogel was a free radical polymerization. Swelling test for the starch-based hydrogel is carried out to observe the ability of hydrogel respond to the environmental change. Scanning Electron Microscope (SEM) is used to determine the morphology of hydrogel. The analysis of chemical structure is determined using the Infrared Spectrometer (IR). X-Ray Diffraction (XRD) is used to determine the present of amorphous component in the hydrogel. Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) are used to determine the thermal stability of the hydrogel. Swelling test for this hydrogel is carried out in 5 different pH buffer solution with pH 3, 5, 7, 9 and 12 at a room temperature. In the buffer solution of pH 7, 9 and 12, the hydrogel with ratio 5:2 shows high value of swelling percentage compare to the hydrogel with ratio 4:1. However, in the buffer solution of pH 3 and 5, the hydrogel with ratio 4:1 swells more compare to the hydrogel with ratio 5:2. The peak showed in the IR proved that the present of the carboxyl group in the hydrogel after the polymerization process. From the thermogram of DSC and TGA, the hydrogel with ratio 5:2 showed higher value of glass transition compared to the hydrogel with ratio 4:1.

 

Keywords:  hydrogel, starch, ubi gadong, gamma radiation technique

 

References

1.       Nadia, H., Amin, M. C. I. M. and Ahmad, I. (2010). Unique stimuli responsive characteristics of   electron beam synthesised bacterial cellulose/acrylic acid composite. Journal of Applied Polymer Science,116(5): 2920 – 2929.

2.       Hoare, T. R. and Kohane, D. S. (2008). Hydrogels in drug delivery: Progress and challenges. Polymer, 49(8): 1993-2007.

3.       Chang, C. and Zhang, L. (2010). Cellulose-based hydrogels: Present status and application prospects. Carbohydrate Polymers,84(1): 40 – 53.

4.       Maran, J. P., Sivakumar, V., Sridhar, R. and Immanuel, V. P (2013). Development of model for mechanical properties of Tapioca Starch based edible films. Industrial Crops and Products, 42: 159 – 168.

5.       Eichhorn, S. J., Young, R. J. and Davies, G. R. (2005). Modeling crystal and molecular deformation in regenerated cellulose fibers. Biomacromolecules, 6(1): 507 – 513.

6.       Pushpamalar, V., Langford, S. J., Ahmad, M., Hashim, K. and Lim, Y. Y. (2012). Preparation of carboxymethyl sago pulp hydrogel from sago waste by electron beam irradiation and swelling behavior in water and various pH media.  Journal of Applied Polymer Science, 128(1): 451 – 459.

7.       Francis, S, Mitra, D., Dhanawade, B. R., Lalitvarshney and Sabharwal, S.  (2009).  Gamma radiation synthesis of rapid swelling super porous polyacrylamide hydrogels. Radiation Physics and Chemistry,78(11): 951 – 953.

8.       Pielichowski, K. and Njuguna, J. (2005). Thermal degradation of polymeric materials. United Kingdom: Rapra Technology Limited.

9.       Gulrez, S. K. H., Al-Assaf, S. and Phillips, G. O. (2011). Hydrogels: Methods of preparation, characterization and applications. Progress in Molecular and Environmental Bioengineering, INTECH Open Access Publisher.

10.    Zhao, Q.  S., Ji, Q. X., Xing, K., Li, X. Y., Liu, C. S. and Chen, X. G. (2009). Preparation and characteristics of novel porous hydrogel films based on chitosan and glycerophosphate. Carbohydrate Polymers, 76: 410 – 416.

11.    Mohd. Amin, M. C. I. and Ahmad, N. (2012). Synthesis and characterisation of thermo- and pH-responsive bacterial cellulose/arylic acid hydrogels for drug delivery. Carbohydrate Polymers, 88: 465 – 473.

12.    Theiss, D., Schmidt, T., Dorschner, H., Reichelt R. and Arndt, K.F. (2005). Filled temperature-sensitive poly(vinyl methyl ether) hydrogels. Journal of Applied Polymer Science, 98: 2253 – 2265.

13.    Halib, N., Mohd. Amin, M. C. I and Ahmad, I. (2012). Physiochemical properties and characterisation of nata de coco from local food industries as a source of cellulose. Sains Malaysiana, 41(2): 205 – 211.

14.    Pourjavadi, A. and Zohuriaan-Mehr, M. J. (2002). Modification of carbohydrate polymers via grafting in air. 2. ceric-initiated graft copolymerization of acrylonitrile onto natural and modified polysaccharides. Starch-Starke, 54: 482 – 488.

 




Previous                    Content                    Next