Malaysian Journal of Analytical Sciences Vol 20 No 5 (2016): 1020 - 1032

DOI: http://dx.doi.org/10.17576/mjas-2016-2005-06

 

 

 

FABRIKASI BIOSENSOR DNA PORSIN BERASASKAN KOMPLEKS RUTENIUM BIPIRIDINA

 

(Fabrication of Porcine DNA Biosensor Based on Ruthenium Bipyridine Complex)

 

Nurul Izni Abdullah Halid1, Emma Izzati Zakariah1, Lee Yook Heng1, Nurul Huda Abd Karim1, Haslina Ahmad2, Siti Aishah Hasbullah1*

 

1Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Jabatan Kimia, Fakulti Sains,

Univesiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

 

*Pengarang utama: aishah80@ukm.edu.my

 

 

Received: 17 February 2016; Accepted: 9 June 2016

 

 

Abstrak

Biosensor DNA elektrokimia bagi pengesanan jujukan DNA porsin berasaskan kompleks rutenium (II) sebagai label aktif redoks telah dibangunkan. Sistem biosensor difabrikasi berdasarkan elektrod bercetak skrin (SPE) terubahsuai dengan zarah nano emas (AuNPs) sebagai transduser yang dipegunkan bersama mikrosfera poli (n-butilakrilat-N-akriloksisuksnimida) dan jujukan DNA prob terikat melalui ikatan kovalen. Kompleks interkalator rutenium (II), [Ru(bpy)2PIP]2+ dan (bpy = bipiridina, PIP = 2-fenillimidazo[4,5-f[1,10-fenantrolina] digunakan dalam pengesanan DNA porsin. Pengukuran dan pengoptimuman biosensor telah dilakukan dengan menggunakan voltammetrik siklik (CV) dan voltammetrik denyutan pembezaan (DPV). Interaksi antara [Ru(bpy)2PIP]2+ dengan beberapa jenis jujukan DNA telah dikaji iaitu, i) bebenang tunggal DNA prob, ii) selepas penghibridan DNA sasaran dan iii) selepas penghibridan dengan DNA bukan sasaran. Keputusan menunjukkan bahawa interaksi antara [Ru(bpy)2PIP]2+ dengan DNA sasaran yang telah terhibrid memberikan rangsangan yang paling tinggi. Prestasi biosensor adalah dipengaruhi oleh beberapa faktor antaranya ialah kepekatan [Ru(bpy)2PIP]2+ dan DNA prob, masa pemegunan dan penghibridan DNA prob, pH, kekuatan ion, kepekatan larutan penimbal dan suhu juga dikaji untuk menilai prestasi biosensor. Hasil kajian menunjukkan kepekatan kompleks [Ru(bpy)2PIP]2+ dan DNA prob, masing-masing adalah 50 µM dan 2 µM. Masa yang optimum bagi pemegunan DNA prob dan penghibridan DNA sasaran adalah 7 jam dan 60 minit. Keadaan optimum bagi pH, kekuatan ion, kepekatan larutan penimbal dan suhu, masing-masing adalah pH 7.0, 1.0 M NaCl, 0.05 M potassium fosfat pada suhu 25°C. Julat linear bagi kepekatan DNA sasaran yang berbeza adalah antara 1.0 x 10-13 M to 1.0 x 10-8 M. Kajian ini adalah yang pertama melaporkan tentang penggunaan [Ru(bpy)2PIP]2+ bagi pengesanan DNA porsin

 

Kata kunci:  biosensor, DNA porsin, kompleks rutenium bipiridina

 

Abstract

Electrochemical DNA biosensor for detection of porcine oligonucleotides based on ruthenium (II) as label redox complex has been developed. The system of biosensor is based on the modified screen printed carbon electrode (SPE) with goldnanoparticles (AuNPs) as transducer immobilized with poly(n-butylacrylate-N-acryloxysuccinimide) microsphere and porcine DNA probe sequences was attached onto it via the covalent bond. The ruthenium(II) complex, [Ru(bpy)2PIP]2+ PIP = 2-phenylimidazo[4,5-f[1,10-phenanthroline] intercalator has been been used to determine prcine DNA. The biosensor was measured and optimized by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The interaction of [Ru(bpy)2PIP]2+ with various DNA with different sequences, i) single stranded probe DNA, ii) after hybridization with its complementary DNA and iii) after hybridization with mismatch complementary DNA were studied. The results indicated that the interaction of [Ru(bpy)2PIP]2+ with hybridized complementary DNA gave the highest response. Thus, development of porcine DNA biosensor and influences of many factors such as [Ru(bpy)2PIP]2+ complex and DNA probe concentration, DNA probe immobilization and hybridization time, pH, ionic strength, buffer concentration and temperatures were also studied to evaluate the performance of biosensor. The concentration of [Ru(bpy)2PIP]2+ complex and DNA probe were found to be optimal at 50 µM and 2 µM, respectively. The optimal time for DNA probe immobilization and hybridization were 7 hours and 60 minutes, accordingly. The optimal condition of pH, ionic strength, buffer concentration and temperatures were at pH 7.0, 1.0 M NaCl, 0.05 M of Na-phosphate buffer and 25 °C, respectively. The linear range of different concentration complementary DNA was within the range between 1.0 x 10-13 M to 1.0 x 10-8 M. This study was first reported the used of [Ru(bpy)2PIP]2+ for detection of porcine oligonucleotides

 

Keywords:  biosensor, porcine DNA, ruthenium bypyridine complex

 

References

1.       Zhai, J., Cui, H. and Yang, R. (1997). DNA based biosensors. Biotechnology Advances, 15(1): 43 – 58.

2.       Wolf, C., Burgener, M., Hübner, P. and Lüthy, J. (2000). PCR-RFLP analysis of mitochondrial DNA: differentiation of fish species. LWT-Food Science and Technology, 33(2): 144 – 150.

3.       Zhang, S., Tan, Q., Li, F. and Zhang, X. (2007). Hybridization biosensor using diaquabis [N-(2-pyridinylmethyl) benzamide-κ 2 N, O]-cadmium (II) dinitrate as a new electroactive indicator for detection of human hepatitis B virus DNA. Sensors and Actuators B: Chemical, 124(2): 290 – 296.

4.       Ferancová, A., Bucková, M., Korgová, E., Korbut, O., Gründler, P., Wärnmark, I., Štepán, R., Barek, J., Zima, J. and Labuda, J.  (2005). Association interaction and voltammetric determination of 1-aminopyrene and 1-hydroxypyrene at cyclodextrin and DNA based electrochemical sensors. Bioelectrochemistry, 67(2): 191 – 197.

5.       Erdem, A., Kerman, K., Meric, B., Akarca, U. S. and Ozsoz, M. (2000). Novel hybridization indicator methylene blue for the electrochemical detection of short DNA sequences related to the hepatitis B virus. Analytica Chimica Acta, 422(2): 139 – 149.

6.       Kerman, K., Ozkan, D., Kara, P., Meric, B., Gooding, J. J. and Ozsoz, M. (2002). Voltammetric determination of DNA hybridization using methylene blue and self-assembled alkanethiol monolayer on gold electrodes. Analytica Chimica Acta, 462(1): 39 – 47.

7.       Richards, A. D. and A. Rodger (2007). Synthetic metallomolecules as agents for the control of DNA structure. Chemical Society Reviews, 36(3): 471 – 483.

8.       Arockiasamy, L. D., Radhika, S., Parthasarathi, R. and Unni Nair, B (2009). Synthesis and DNA-binding studies of two ruthenium (II) complexes of an intercalating ligand. European Journal of Medicinal Chemistry, 44(5): 2044 – 2051.

9.       Ozsoz, M.,  Erdem, A., Kara, P., Kerman, K. and Ozkan, D. (2003). Electrochemical biosensor for the detection of interaction between arsenic trioxide and DNA based on guanine signal. Electroanalysis, 15 (7): 613 – 619.

10.    Li, J., Xu, L.-C., Chen, J.-C., Zheng, K.-C. and Ji, L.-N. (2006). Density functional theory/time-dependent DFT studies on the structures, trend in DNA-binding affinities, and spectral properties of complexes [Ru (bpy) 2 (p-R-pip)] 2+(R=-OH,-CH3,-H,-NO2). The Journal of Physical Chemistry A, 110(26): 8174 – 8180.

11.    Ulianas, A., Lee, Y. H., Hanifah, S. A. and Tan. L. L. (2012). An electrochemical DNA microbiosensor based on succinimide-modified acrylic microspheres. Sensors, 12(5): 5445 – 5460.

12.    Erdem, A., Kerman, K., Mer˙ic¸ B., Ozkan, D., Kara, P. and Ozsoz, M. (2002). DNA biosensor for Microcystis spp. sequence detection by using methylene blue and ruthenium complex as electrochemical hybridization labels. Turkish Journal of Chemistry, 26(6): 851 – 862.

13.    Johnston, D. H., Katherine, C. G. and Thorp, H. H. (1995). Electrochemical measurement of the solvent accessibility of nucleobases using electron transfer between DNA and metal complexes. Journal of the American Chemical Society, 117 (35): 8933 – 8938.

14.    Xiong, Y. and Ji, L.-N. (1999). Synthesis, DNA-binding and DNA-mediated luminescence quenching of Ru (II) polypyridine complexes. Coordination Chemistry Reviews, 185: 711 – 733.

15.    Alferdo, D. L. E. M., Maria, B. G. G and Agustin, C. G. (2007). DNA hybdridization sensor based on aurothiomalate electroactive label on glassy carbon electrodes. Biosensor and Bioelectronics, 22: 1048 – 1054.

16.    Loaiza, O. A., Campuzano, S., Pedrero, M. and Pingarron, J. M. (2007). DNA sensor based on an Escherichia col lac Z gen prob immobilization at sel-assembled monolayres-modified gold electrodes. Talanta 73: 838 – 844.

17.    Ping, D., Hongzia, L. and Wei, C. (2009). Construction of DNA sandwich electrochemical biosensor with nano PbS and nanoAu tags on magnetic microbeads. Biosensor and Bioelectronics, 24: 3223 –3228.

18.    Hames, B. B. and Higgins, S. J (1985). Nucleic acid hybridisation-a practical approach. Oxford University Press.

19.    Metzenberg, S (2007). Working with DNA. USA: Taylor & Francis. California State University Northridge.

20.    Lucarelli, F., Marazza, G., Turner, A.P.F and Mascini, M. (2004). Carbon and gold electrodes as electrochemical transducers for DNA hybridization sensors. Biosensors and Bioelectronics, 19: 515 –530

21.    Wang, J. Cai, X., Rivas, G. and Shiraishi, H. (1996). Stripping potentiometric transduction of DNA hybridization process. Analytica Chimica Acta,  326: 141 – 147.

 




Previous                    Content                    Next