Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1346 -1358

DOI: http://dx.doi.org/10.17576/mjas-2016-2006-13

 

 

 

PESTICIDES RESIDUES IN AGRICULTURAL SOILS AND ITS HEALTH ASSESSMENT FOR HUMANS IN CAMERON HIGHLANDS, MALAYSIA

 

(Residu Racun Serangga dalam Tanah Pertanian dan Penilaian Kesihatan Terhadap Manusia

di Cameron Highlands, Malaysia)

 

Yang Farina1, 2*, Md Pauzi Abdullah1, 2, Nusrat Bibi1,3, Wan Mohd Afiq Wan Mohd Khalik1

 

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Centre for Water Research and Analysis, Faculty of Science and Technology,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Department of Chemistry, Faculty of Science,

Sardar Bahadur Khan Women University, Quetta, Pakistan

 

*Corresponding author: farina@ukm.edu.my

 

 

Received: 16 May 2016; Accepted: 21 September 2016

 

 

Abstract

Soil contamination is one of the sensitive issue in agricultural region of Cameron Highlands, Malaysia, which is a largest vegetable producer. Organochlorine pesticides (OCPs), organophosphorus pesticides (OPPs) and pyrethroids pesticides (PYRs) concentrations were measured in 35 soil samples of selected crops. Among OCPs, the average concentration in the soil of these crops grown was in the order of cauliflowers > cabbage > broccoli > lettuce > celery > spinach > mustard, while for OPPs; spinach > broccoli > cabbage > cauliflower > celery > lettuce > mustard > and for PYRs it was broccoli > cabbage > cauliflower > spinach > mustard > celery > lettuce. For risk assessment life time average daily dose (LADD) of  SOCPs, SOPPs and SPYRs for adults were calculated at 2.1 x 10-7 – 1 x 10-6 mg kg-1 d-1, 1.46 x 10-11 – 3.6 x 10-10 mg kg-1 d-1 and 1.28 x 10-12 – 3.42 x 10-12 mg kg-1 d-1  meanwhile for children  5.3 x 10-8 – 2.7 x 10-7 mg kg-1 d-1,  3.8 x 10-11 – 9.4 x 10-10 mg kg-1 d-1 and 8.8 x 10-12 – 1.6 x 10-10 mg kg-1 d-1. The hazard quotient (HQ) was £ 1 indicating less health risks for humans. Principal Component Analysis (PCA) indicates a strong correlation of high pesticides residual concentration of the soil of crops (cauliflower, cabbage and broccoli) with soil properties (pH and organic content) thus influencing its mobility and persistence whereas for other crops soil the decrease residual concentration might be related to crop type, rotation, roots exude, rhizosphere effect, or a rapid disappearance of pesticides after application.

 

Keywords:  organochlorine, organophosphorus, pyrethroids, gas chromatography, multivariate analysis

 

Abstrak

Pencemaran tanah merupakan salah satu daripada isu yang sensitif dalam kawasan pertanian di Cameron Highlands, Malaysia, di mana ianya merupakan kawasan pengeluar sayur yang terbesar di Malaysia. Kepekatan racun serangga organoklorin (OCPs), organofosforus (OPPs) dan piretroid (PYRs) telah diukur dalam 35 sampel tanah dari tanaman yang terpilih. Berikut merupakan tertib kepekatan OCPs dalam tanah dari tanaman kubis bunga > kubis > brokoli > salad > sederi > bayam > sawi, manakala untuk OPPs adalah bayam > brokoli > kubis > kubis bunga > saderi > salad > sawi dan untuk PYRs adalah brokoli > kubis > kubis bunga > bayam > sawi > saderi > salad. Bagi penilaian risiko purata jangka hayat dos harian (LADD) untuk SOCPs, SOPPs dan SPYRs untuk dewasa adalah 2.1 x 10-7 – 1 x 10-6 mg kg-1 d-1, 1.46 x   10-11 – 3.6 x 10-10 mg kg-1 d-1 dan 1.28 x 10-12 – 3.42 x 10-12 mg kg-1 d-1, manakala kanak – kanak  5.3 x 10-8 – 2.7 x 10-7 mg kg-1 d-1,  3.8 x 10-11 – 9.4 x 10-10 mg kg-1 d-1  dan  8.8 x 10-12 – 1.6 x 10-10 mg kg-1 d-1. Darjah bahaya (HQ) adalah £ 1 iaitu menjelaskan bahawa ianya kurang berisiko terhadap kesihatan manusia. Analisis komponen utama (PCA) menunjukkan terdapat korelasi yang kuat untuk kepekatan residu racun serangga yang tinggi daripada tanah untuk tanaman (kubis bunga, kubis, dan brokoli) dengan ciri – ciri tanah (pH dan kandungan organik) sekali gus mempengaruhi mobiliti dan pengekalannya manakala untuk tanah tanaman lain kepekatan residu berkurangan mungkin disebabkan oleh faktor yang berkaitan jenis tanaman, kitaran, rembesan akar – akar, kesan rezosfera, atau kehilangan racun yang cepat selepas penggunaannya.

 

Kata kunci:  organoklorin, organofosforus, piretroid, kromatografi gas, analisis multivariat

 

References

1.       Gonçalves, C., Da Silva, J. C. E. and Alpendurada, M. F. (2006). Chemometric interpretation of pesticide occurrence in soil samples from an intensive horticulture area in North Portugal. Analytica Chimica Acta, 560: 164 – 171.

2.       Mishra, K., Sharma, R. C. and Kumar, S. (2012). Contamination levels and spatial distribution of organochlorine pesticides in soils from India. Ecotoxicology Environment Safety, 76: 215 – 225.

3.       Shi, R., Lv, J. and Feng, J. (2011). Assessment of pesticide pollution in suburban soil in South Shenyang, China. Bulletin of Environmental Contamination and Toxicology, 87: 567 – 573.

4.       El-Shahawi, M. S., Hamza, A., Bashammakh, A. S. and Al-Saggaf, W.T. (2010). An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta, 80:1587 – 1597.

5.       Ng, W. F., Teo, M. J. K. and Lakso, H. A. (1999). Determination of organophosphorus pesticides in soil by headspace solid-phase microextraction. Fresenius' Journal of Analytical Chemistry, 363: 673 – 679.

6.       Derbalah, A. S., Ismail, A. and Hamza, A. (2013). Monitoring of organophosphorus pesticides and bioremediation chlorpyrifos in soil. Egyptian Journal of Plant Production Research, 1: 115 – 132.

7.       Sattar M. A. (1990). Fate of organophosphorus pesticides in soils. Chemosphere, 20: 387 – 396.

8.       Ragnarsdottir, K. V. (2000). Environmental fate and toxicology of organophosphate pesticides. Journal of the Geological Society, 157: 859 – 876.

9.       Ismail, B. S. and Kalithasan, K. (2004). Adsorption, desorption, and mobility of permethrin in Malaysian soils. Journal of Environmental Science and Health Part B, 39: 419 – 429.

10.    Velasco, A., Hernández, S., Ramírez, M. and Ortíz, I. (2014). Detection of residual organochlorine and organophosphorus pesticides in agricultural soil in Rio Verde Region of San Luis Potosi, Mexico. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 49: 498 – 504.

11.    Gao F., Jia, J. and Wang, X. (2008). Occurrence and ordination of dichlorodiphenyltrichloroethane and hexachlorocyclohexane in agricultural soils from Guangzhou, China. Archives of Environmental Contamination and Toxicology, 54:155 – 166.

12.    Bempah, C. K., Donkor, A., Yeboah, P. O., Dubey, B. and Osei-Fosu, P. (2011). A preliminary assessment of consumer’s exposure to organochlorine pesticides in fruits and vegetables and the potential health risk in Accra Metropolis, Ghana. Food Chemistry, 128: 1058 – 1065.

13.    Kumar, B., Verma, V.K., Mishra, M., Gaur, R., Kumar, S. and Sharma, C.S. (2014). DDT and HCH (Organochlorine Pesticides) in residential soils and health assessment for human populations in Korba, India. Human and Ecological Risk Assessment: An International Journal, 20: 1538 – 1549.

14.    Arias-Estévez M., López-Periago, E., Martínez-Carballo, E., Simal-Gándara, J., Mejuto, J. C. and  García-Río, L. (2008). The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems & Environment, 123: 247 – 260.

15.    Weng, T. K. and Chee, B. W. (2015). Water quality monitoring using biological indicators in Cameron Highlands Malaysia. Journal of Sustainable Development, 8: 28 – 42.

16.    Heiri, O., Lotter, A. F. and Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology, 25: 101 – 110.

17.    Ngan, C. K., Cheah, U. B., Abdullah, W. W., Lim, K. P. and Ismail, B. S. (2005). Fate of chlorothalonil, chlorpyrifos and profenofos in a vegetable farm in Cameron Highlands, Malaysia. Water, Air, & Soil Pollution: Focus, 5:125 – 136.

18.    Agency for Toxic substances and Disease Registry (2005). Toxicological profile for hexachlrocyclohexanes. US Public Health Service, Atlanta, GA, USA.

19.    United States Environmental Protection Agency (1989). Risk assessment guide for super fund. Human health evaluation manual, Part A. EPA 540-1-89-002.USEPA, Washington DC.

20.    Shukor, N. S. A., Khazaai, S. N. M., Hussain, Z. M. and Jan, S. L. M. (2015). Degradation behavior of chlorpyrifos in spinach (Spinacia oleracea) and soil. Malaysian Journal of Analytical Sciences 19(4), 722 – 729.

21.    Velasco, A., Rodríguez, J., Castillo, R. and Ortíz, I. (2012). Residues of organochlorine and organophosphorus pesticides in sugarcane crop soils and river water.  Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 47: 833 – 841.

22.    Miglioranza, K. S. B., de Moreno, J. E., Moreno, V. J., Osterrieth, M. L. and Escalante, A. H. (1999). Fate of organochlorine pesticides in soils and terrestrial biota of “los padres” pond watershed, Argentina. Environmental Pollution, 105: 91 – 99.

23.    Gonzalez, M., Miglioranza, K. S., Aizpún de Moreno J. E. and Moreno, V. J. (2003). Organochlorine pesticide residues in leek (Allium porrum) crops grown on untreated soils from an agricultural environment. Journal Agricultural and Food Chemistry, 51: 5024 – 5029.

24.    Vig, K., Singh, D. K., Agarwal, H. C., Dhawan, A. C. and Dureja, P. (2001). Insecticide residues in cotton crop soil. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 36: 421 – 434.

25.    Crisanto, T., SanchezMartin, M. J., SanchezCamazano, M. and M. Arienzo (1994). Mobility of pesticides in soils. influence of soil properties and pesticide structure. Toxicological & Environmental Chemistry, 45: 97 – 104.

26.    Gonzalez, M., Miglioranza, K. S., Aizpún, J. E., Isla, F. I. and Peña, A. (2010). Assessing pesticide leaching and desorption in soils with different agricultural activities from Argentina (Pampa and Patagonia). Chemosphere, 81: 351 – 358.

27.    Pereira, R. C., Camps-Arbestain, M., Garrido, B. R., Macías, F. M. and Monterroso, C. (2006).  Behaviour of α-, β-, γ-, and δ-Hexachlorocyclohexane in the soil–plant system of a contaminated site. Environmental Pollution, 144: 210 – 217.

28.    Chapman, R. A. and Cole, C. M. (1982). Observations on the influence of water and soil pH on the persistence of insecticides. Journal of Environmental Science & Health Part B, 17: 487 – 504.

29.    Krishna, K. R. and Philip, R. (2008). Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils. Journal of Hazardous Materials 160: 559 – 567.

30.    Vagi, M. C, Petsas, A. S., Kostopoulou, M. N. and Lekkas, T. D. (2010). Adsorption and desorption processes of the organophosphorus pesticides, dimethoate and fenthion, onto three Greek agricultural soils. International Journal of Environmental and Analytical Chemistry, 90: 369 – 389.

31.    Rodriguez-Cruz, M. S., Sanchez-Martin, M. J. Andrades, M. J. and Sánchez-Camazano, M. (2006). Comparison of pesticide sorption by physicochemically modified soils with natural soils as a function of soil properties and pesticide hydrophobicity. Soil and Sediment Contamination, 15:401 – 415.

32.    Tao, S., Xu, F. L., Wang, X. J., Liu, W. X., Gong, Z. M. and Fang, J.Y. (2005). Organochlorine pesticides in agricultural soil and vegetables from Tianjin, China. Environmental Science & Technology, 39(8): 2494 – 2499.

33.    Getzin, L. W. (1968). Persistence of diazinon and zinophos in soil: Effects of autoclaving, temperature, moisture, and acidity. Journal of Economic Entomology, 61: 1560 – 1565.

34.    Nemeth-Konda, L., Füleky, G., Morovjan, G. and Csokan, P. (2002). Sorption behaviour of acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon on Hungarian agricultural soil. Chemosphere, 48: 545 – 552.

35.    Kanazawa, J. (1989). Relationship between the soil sorption constants for pesticides and their physicochemical properties. Environmental Toxicology and Chemistry, 8: 477 – 484.

 




Previous                    Content                    Next