Malaysian
Journal of Analytical Sciences Vol 20 No 6 (2016): 1346 -1358
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-13
PESTICIDES RESIDUES IN
AGRICULTURAL SOILS AND ITS HEALTH ASSESSMENT FOR HUMANS IN CAMERON HIGHLANDS,
MALAYSIA
(Residu Racun Serangga dalam Tanah Pertanian dan
Penilaian Kesihatan Terhadap Manusia
di Cameron Highlands, Malaysia)
Yang Farina1, 2*, Md Pauzi Abdullah1, 2, Nusrat Bibi1,3, Wan Mohd Afiq Wan Mohd Khalik1
1School of Chemical Sciences and Food Technology,
Faculty of Science and Technology,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
2Centre for Water Research and
Analysis, Faculty of Science and Technology,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
3Department of Chemistry, Faculty of
Science,
Sardar
Bahadur Khan Women University, Quetta, Pakistan
*Corresponding author: farina@ukm.edu.my
Received: 16
May 2016; Accepted: 21 September 2016
Abstract
Soil
contamination is one of the sensitive issue in agricultural region of Cameron
Highlands, Malaysia, which is a largest vegetable producer. Organochlorine
pesticides (OCPs), organophosphorus pesticides (OPPs) and pyrethroids pesticides
(PYRs) concentrations were measured in 35 soil samples of selected crops. Among
OCPs, the average concentration in the soil of these crops grown was in the
order of cauliflowers > cabbage > broccoli > lettuce > celery >
spinach > mustard, while for OPPs; spinach > broccoli > cabbage > cauliflower > celery >
lettuce > mustard > and for PYRs it was broccoli > cabbage >
cauliflower > spinach > mustard > celery > lettuce. For risk
assessment life time average daily dose (LADD) of SOCPs, SOPPs
and SPYRs for adults were calculated at 2.1 x 10-7
– 1 x 10-6 mg kg-1 d-1, 1.46 x 10-11 – 3.6 x 10-10
mg kg-1 d-1 and 1.28 x 10-12 – 3.42 x 10-12 mg
kg-1 d-1 meanwhile for children 5.3 x 10-8 – 2.7 x 10-7 mg
kg-1 d-1, 3.8
x 10-11 – 9.4 x 10-10 mg kg-1 d-1
and 8.8 x 10-12 – 1.6 x 10-10 mg kg-1 d-1.
The hazard quotient (HQ) was £
1 indicating less health risks for humans. Principal Component Analysis (PCA) indicates a strong
correlation of high pesticides residual concentration of the soil of crops
(cauliflower, cabbage and broccoli) with soil properties (pH and organic
content) thus influencing its mobility and persistence whereas for other crops
soil the decrease residual concentration might be related to crop type,
rotation, roots exude, rhizosphere effect, or a rapid disappearance of
pesticides after application.
Keywords: organochlorine, organophosphorus, pyrethroids,
gas chromatography, multivariate analysis
Abstrak
Pencemaran tanah merupakan salah satu
daripada isu yang sensitif dalam kawasan pertanian di Cameron Highlands,
Malaysia, di mana ianya merupakan kawasan pengeluar sayur yang terbesar di
Malaysia. Kepekatan racun serangga organoklorin (OCPs), organofosforus (OPPs)
dan piretroid (PYRs) telah diukur dalam 35 sampel tanah dari tanaman yang
terpilih. Berikut merupakan tertib kepekatan OCPs dalam tanah dari tanaman kubis
bunga > kubis > brokoli > salad > sederi > bayam > sawi,
manakala untuk OPPs adalah bayam
> brokoli > kubis > kubis bunga > saderi > salad > sawi dan
untuk PYRs adalah brokoli > kubis > kubis bunga > bayam > sawi >
saderi > salad. Bagi penilaian risiko purata jangka hayat dos harian (LADD)
untuk SOCPs, SOPPs dan SPYRs untuk dewasa adalah 2.1 x 10-7 – 1 x 10-6 mg
kg-1 d-1, 1.46
x 10-11 – 3.6 x 10-10 mg
kg-1 d-1 dan
1.28 x 10-12 – 3.42 x 10-12 mg kg-1 d-1,
manakala kanak – kanak 5.3 x 10-8 – 2.7 x 10-7 mg
kg-1 d-1, 3.8
x 10-11 – 9.4 x 10-10 mg kg-1 d-1 dan 8.8
x 10-12 – 1.6 x 10-10 mg kg-1 d-1.
Darjah bahaya (HQ) adalah £ 1 iaitu menjelaskan bahawa ianya kurang
berisiko terhadap kesihatan manusia. Analisis komponen utama (PCA) menunjukkan
terdapat korelasi yang kuat untuk kepekatan residu racun serangga yang tinggi
daripada tanah untuk tanaman (kubis bunga, kubis, dan brokoli) dengan ciri – ciri
tanah (pH dan kandungan organik) sekali gus mempengaruhi mobiliti dan
pengekalannya manakala untuk tanah tanaman lain kepekatan residu berkurangan
mungkin disebabkan oleh faktor yang berkaitan jenis tanaman, kitaran, rembesan
akar – akar, kesan rezosfera, atau kehilangan racun yang cepat selepas
penggunaannya.
Kata
kunci:
organoklorin, organofosforus, piretroid, kromatografi gas, analisis multivariat
References
1.
Gonçalves, C., Da Silva, J. C. E. and Alpendurada,
M. F. (2006). Chemometric interpretation of pesticide occurrence in soil
samples from an intensive horticulture area in North Portugal. Analytica Chimica Acta, 560: 164 – 171.
2.
Mishra, K., Sharma, R. C. and Kumar, S. (2012).
Contamination levels and spatial distribution of organochlorine pesticides in
soils from India. Ecotoxicology
Environment Safety, 76: 215 – 225.
3.
Shi, R., Lv, J. and Feng, J. (2011). Assessment
of pesticide pollution in suburban soil in South Shenyang, China. Bulletin of Environmental
Contamination and Toxicology, 87: 567 – 573.
4.
El-Shahawi, M. S., Hamza, A., Bashammakh, A. S.
and Al-Saggaf, W.T. (2010). An overview on the accumulation, distribution,
transformations, toxicity and analytical methods for the monitoring of
persistent organic pollutants. Talanta, 80:1587 – 1597.
5.
Ng, W. F., Teo, M. J. K. and Lakso, H. A.
(1999). Determination of organophosphorus pesticides in soil by headspace
solid-phase microextraction. Fresenius' Journal of
Analytical Chemistry, 363: 673 – 679.
6.
Derbalah, A. S., Ismail, A. and Hamza, A.
(2013). Monitoring of
organophosphorus pesticides and bioremediation chlorpyrifos in soil. Egyptian Journal of Plant Production
Research, 1: 115 – 132.
7.
Sattar M. A. (1990). Fate of organophosphorus
pesticides in soils. Chemosphere, 20: 387 – 396.
8.
Ragnarsdottir,
K. V. (2000). Environmental fate and toxicology of organophosphate
pesticides. Journal of the
Geological Society, 157: 859 – 876.
9.
Ismail, B. S. and Kalithasan, K. (2004).
Adsorption, desorption, and mobility of permethrin in Malaysian soils. Journal of
Environmental Science and Health Part B, 39: 419 – 429.
10.
Velasco, A., Hernández, S., Ramírez, M. and Ortíz, I. (2014).
Detection of residual organochlorine and organophosphorus pesticides in
agricultural soil in Rio Verde Region of San Luis Potosi, Mexico. Journal of Environmental Science and Health, Part B: Pesticides, Food
Contaminants, and Agricultural Wastes, 49: 498 – 504.
11.
Gao F., Jia, J. and Wang, X. (2008). Occurrence
and ordination of dichlorodiphenyltrichloroethane and hexachlorocyclohexane in
agricultural soils from Guangzhou, China. Archives of
Environmental Contamination and Toxicology,
54:155 – 166.
12.
Bempah,
C. K., Donkor, A., Yeboah, P. O., Dubey, B. and Osei-Fosu, P. (2011). A
preliminary assessment of consumer’s exposure to organochlorine pesticides in
fruits and vegetables and the potential health risk in Accra Metropolis,
Ghana. Food Chemistry, 128: 1058
– 1065.
13.
Kumar,
B., Verma, V.K., Mishra, M., Gaur, R., Kumar, S. and Sharma, C.S. (2014). DDT
and HCH (Organochlorine Pesticides) in residential soils and health assessment
for human populations in Korba, India. Human
and Ecological Risk Assessment: An International Journal, 20: 1538 – 1549.
14.
Arias-Estévez M., López-Periago, E.,
Martínez-Carballo, E., Simal-Gándara, J., Mejuto, J. C. and García-Río, L. (2008). The mobility and
degradation of pesticides in soils and the pollution of groundwater resources. Agriculture, Ecosystems
& Environment, 123: 247 – 260.
15.
Weng,
T. K. and Chee, B. W. (2015). Water quality monitoring using biological
indicators in Cameron Highlands Malaysia. Journal of Sustainable Development, 8: 28 – 42.
16.
Heiri, O., Lotter, A. F. and Lemcke, G. (2001).
Loss on ignition as a method for estimating organic and carbonate content in
sediments: Reproducibility and comparability of results. Journal of
Paleolimnology, 25: 101 – 110.
17.
Ngan, C. K., Cheah, U. B., Abdullah, W. W.,
Lim, K. P. and Ismail, B. S. (2005). Fate of chlorothalonil, chlorpyrifos and
profenofos in a vegetable farm in Cameron Highlands, Malaysia. Water, Air,
& Soil Pollution: Focus, 5:125 – 136.
18.
Agency for Toxic substances and Disease Registry (2005).
Toxicological profile for hexachlrocyclohexanes. US Public Health Service,
Atlanta, GA, USA.
19.
United States Environmental Protection Agency (1989). Risk
assessment guide for super fund. Human health evaluation manual, Part A. EPA
540-1-89-002.USEPA, Washington DC.
20.
Shukor,
N. S. A., Khazaai, S. N. M., Hussain, Z. M. and Jan, S. L. M. (2015).
Degradation behavior of chlorpyrifos in spinach (Spinacia oleracea) and soil. Malaysian
Journal of Analytical Sciences 19(4), 722 – 729.
21.
Velasco, A., Rodríguez, J., Castillo, R. and
Ortíz, I. (2012). Residues of organochlorine and organophosphorus pesticides in
sugarcane crop soils and river water. Journal of Environmental Science and Health, Part B: Pesticides, Food
Contaminants, and Agricultural Wastes, 47: 833 – 841.
22.
Miglioranza, K. S. B., de Moreno, J. E.,
Moreno, V. J., Osterrieth, M. L. and Escalante, A. H. (1999). Fate of
organochlorine pesticides in soils and terrestrial biota of “los padres” pond
watershed, Argentina. Environmental Pollution, 105: 91 – 99.
23.
Gonzalez, M., Miglioranza, K. S., Aizpún de
Moreno J. E. and Moreno, V. J. (2003). Organochlorine pesticide residues in
leek (Allium porrum) crops grown on
untreated soils from an agricultural environment. Journal
Agricultural and Food Chemistry, 51:
5024 – 5029.
24.
Vig,
K., Singh, D. K., Agarwal, H. C., Dhawan, A. C. and Dureja, P. (2001).
Insecticide residues in cotton crop soil. Journal of Environmental
Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 36: 421 – 434.
25.
Crisanto, T., Sanchez‐Martin, M. J., Sanchez‐Camazano, M. and M. Arienzo (1994). Mobility of pesticides in
soils. influence of soil properties and pesticide structure. Toxicological & Environmental Chemistry, 45:
97 – 104.
26.
Gonzalez, M., Miglioranza, K. S., Aizpún, J.
E., Isla, F. I. and Peña, A. (2010). Assessing pesticide leaching and
desorption in soils with different agricultural activities from Argentina (Pampa
and Patagonia). Chemosphere, 81: 351 – 358.
27.
Pereira, R. C., Camps-Arbestain, M., Garrido,
B. R., Macías, F. M. and Monterroso, C. (2006). Behaviour of α-, β-, γ-, and
δ-Hexachlorocyclohexane in the soil–plant system of a contaminated site. Environmental
Pollution, 144: 210 – 217.
28.
Chapman,
R. A. and Cole, C. M. (1982). Observations on the influence of water and soil
pH on the persistence of insecticides. Journal
of Environmental Science & Health Part B, 17: 487 – 504.
29.
Krishna,
K. R. and Philip, R. (2008). Adsorption and desorption characteristics of
lindane, carbofuran and methyl parathion on various Indian soils. Journal of Hazardous Materials 160:
559 – 567.
30.
Vagi, M. C, Petsas, A. S., Kostopoulou, M. N.
and Lekkas, T. D. (2010). Adsorption and desorption processes of the organophosphorus
pesticides, dimethoate and fenthion, onto three Greek agricultural soils. International
Journal of Environmental and Analytical Chemistry, 90: 369 – 389.
31.
Rodriguez-Cruz,
M. S., Sanchez-Martin, M. J. Andrades, M. J. and Sánchez-Camazano, M. (2006).
Comparison of pesticide sorption by physicochemically modified soils with
natural soils as a function of soil properties and pesticide
hydrophobicity. Soil and Sediment
Contamination, 15:401 – 415.
32.
Tao,
S., Xu, F. L., Wang, X. J., Liu, W. X., Gong, Z. M. and Fang, J.Y. (2005).
Organochlorine pesticides in agricultural soil and vegetables from Tianjin,
China. Environmental Science &
Technology, 39(8): 2494 – 2499.
33.
Getzin,
L. W. (1968). Persistence of diazinon and zinophos in soil: Effects of
autoclaving, temperature, moisture, and acidity. Journal of Economic Entomology, 61: 1560 – 1565.
34.
Nemeth-Konda,
L., Füleky, G., Morovjan, G. and Csokan, P. (2002). Sorption behaviour of
acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon on
Hungarian agricultural soil. Chemosphere,
48: 545 – 552.
35.
Kanazawa,
J. (1989). Relationship between the soil sorption constants for pesticides and
their physicochemical properties. Environmental
Toxicology and Chemistry, 8: 477 – 484.