Malaysian
Journal of Analytical Sciences Vol 20 No 6 (2016): 1338 - 1345
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-12
DEGRADATION OF METHYLENE BLUE DYE
BY CuO-BiVO4 PHOTOCATALYSTS
UNDER VISIBLE LIGHT IRRADIATION
(Degradasi Pewarna
Metilena Biru oleh Fotomangkin CuO-BiVO4 Di Bawah Sinaran
Cahaya Nampak)
Abdul Halim Abdullah1,2*,
Wan Tze Peng2, Mohd Zobir Hussein1,2
1Institute of Advanced Technology
2Department of Chemistry, Faculty of
Science
Universiti
Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
*Corresponding author: halim@upm.edu.my
Received: 17
August 2015; Accepted: 13 October 2016
Abstract
Bismuth vanadate
(BiVO4) and a series of Cu-loaded BiVO4 (CuO-BiVO4)
photocatalysts were prepared via precipitation and wet impregnation methods
respectively. The samples were characterized by X-ray diffractometry (XRD),
transmission electron microscopy (TEM) and the band gap energy was elucidated
via UV-visible diffuse reflectance spectroscopy (DRS). Spherically-shaped
particles of the photocatalysts were obtained which contained mixtures of
monoclinic and tetragonal BiVO4 phases. The particle sizes of the
photocatalysts ranged from 20 to 100 nm and band gap energies varied from 2.47
to 2.53 eV. The photodegradation efficiency of the photocatalysts was evaluated
by degrading methylene blue (MB) dye under visible-light irradiation. The
optimum conditions for the photocatalytic degradation were determined based on
wt% Cu loaded, mass loading, initial dye concentration and pH. 1 wt% CuO-BiVO4
exhibited the highest photocatalytic activity where the complete removal of 10
mgL-1 of MB was obtained at pH 10 when 0.8 g of the catalyst was
used under 4 hours of 18W fluorescent light irradiation.
Keywords: copper oxide-bismuth vanadate,
visible light photocatalyst, semiconductor, methylene blue
Abstrak
Bismut vanadat (BiVO4) dan satu siri
fotomangkin CuO-BiVO4 masing
– masing telah disediakan melalui kaedah pemendakan dan impregnasi basah. Pencirian
sampel menggunakan pembelauan Sinar-X (XRD),
transmisi elektron
mikroskopi (TEM) dan tenaga jurang jalurnya melalui spektroskopi UV-Vis pantulan resap (DRS). Fotomangkin yang berbentuk sfera mengandungi campuran fasa monoklinik dan tetragonal BiVO4
telah dihasilkan. Saiz
zarah fotomangkin adalah antara julat 20 – 100 nm dan tenaga jurang jalurnya adalah 2.47 – 2.53
eV. Keberkesanan
fotodegradasi pemangkin telah
dinilai dengan menyingkirkan pewarna metilena biru (MB) di bawah sinaran cahaya nampak. Keadaan
optimum bagi degradasi fotopemangkinan adalah berdasarkan % berat Cu yang dimuatkan, muatan jisim, kepekatan
awal pewarna dan
pH. 1% berat CuO-BiVO4 menunjukkan aktiviti fotopemangkinan adalah paling tinggi di mana penyingkiran peratusan MB menghampiri
100% 10 mgL-1
of MB di bawah keadaan
optimum iaitu pH 10 dengan 0.8 g pemangkin
digunakan yang didedahkan di bawah sinaran 18W cahaya pendarfluor selama 4 jam.
Kata kunci: kuprum oksida-
bismut vanadat, fotomangkin cahaya nampak, semikonduktor, metilena biru
References
1. Fujishima, A., Hashimoto, K. and Watanabe, T.
(1999). TiO2 photocatalysis: Fundamentals and applications. BKC,
Tokyo.
2. Yin, S., Yamaki, H., Komatsu, M., Zhang, Q.,
Wang, J., Tang, Q., Saito, F. and Sato, T. (2003). Preparation of
nitrogen-doped titania with high visible light induced photocatalytic activity
by mechanochemical reaction of titania and hexamethylenetetramine. Journal of Materials Chemistry, 13 (12):
2996 – 3001.
3. Livraghi, S., Votta, A., Paganini, M. C. and
Giamello, E. (2005). The nature of paramagnetic species in nitrogen doped TiO2
active in visible light photocatalysis. Chemical
Communication, 41(4): 498 – 500.
4. Cheng, X. L., Jiang, J. S., Jin, C. Y., Lin,
C. C., Zeng, Y. and Zhang, Q. H. (2014). Cauliflower like α-Fe2O3
microstructures: Toulene-water interface assisted synthesis, characterization
and application in wastewater treatment and visible light photocatalysis. Chemical Engineering Journal, 236(1):
139 – 148.
5. Sanchez-Martinez, D., Martinez-de la Cruz, A.
and Lopez-Cuellar, E. (2011). Photocatalytic properties of WO3
nanoparticle obtained by precipitation in presence of urea as complexing agent.
Applied Catalysis A-General,
398(1-2):179 – 186.
6. Sun, J., Chen, G., Wu, J., Dong, H. and
Xiong, G. (2013). BiVO4 hollow spheres: Bubble template synthesis
and enhanced photocatalytic properties. Applied
Catalysis B-Environmental, 132: 304 – 314.
7. Zhang, F. J., Xie, F-Z., Liu J., Zhao, W. and
Zhang, K. (2013). Rapid sonochemical synthesis of nano laminar like Bi2WO6
as efficient visible light active photocatalyst. Ultrasonics Sonochemistry, 20: 2009 – 2015.
8. Bi, Y., Ouyang, S., Umezawa N., Cao, J. and
Ye, J. (2011). Facet effect of single-crystalline Ag3PO4
sub-microcrystals on photocatalytic properties.
Journal of American Chemical
Society, 133: 6490 – 6492.
9. Wang, F., Shao, M., Cheng, L., Hua, J. and Wei, X. (2009). The
synthesis of monoclinic bismuth vanadate nanoribbons and studies of
photoconductive, photoresponse and photocatalytic properties. Materials Research Bulletin, 44(8):
1687–1691.
10. Abdullah, A. H., Moey, H. J. M. and Yusof, N. A. (2012). Response
surface methodology analysis of the photocatalytic removal of methylene blue
using bismuth vanadate prepared via polyol route. Journal of Environmental Sciences, 24(9): 1694 – 1701.
11. Shan, L., Mi, J., Dong, L., Han, Z. and Liu, B. (2014). Enhanced
photocatalytic properties of silver oxide loaded bismuth vanadate, Chinese Journal of Chemical Engineering,
22: 909 – 913.
12. Lin, X., Yu, L., Yan, L, Li, H., Yan, Y., Liu, C. and Zhai, H. (2014).
Visible light photocatalytic activity of BiVO4 particles with
different morphologies. Solid State
Sciences, 32: 61 – 66.
13. Bian, Z-Y., Zhu, Y-Q., Zhang, J-X., Ding, A-Z. and Wang, H. (2014).
Visible light driven degradation of ibuprofen using abundant metal loaded BiVO4
photocatalyst. Chemosphere, 117: 527
– 531.
14. Garcia-Perez, U. M., Sepulveda-Guzman, S. and Martinez-de la Cruz,
A. (2012). Nanostructures BiVO4 photocatalyst synthesized via
polymer assisted co-precipitation method and their photocatalytic properties
under visible light irradiation. Solid
State Sciences, 14: 293 – 298.
15. Chala, S., Wetchakun, K., Panichphant, S.,
Inceesungvorn, B. and Whetchakun, N. (2014). Enhanced visible-light-response
photocatalytic degradation of methylene blue on Fe-loaded BiVO4
photocatalyst. Journal of Alloys and
Compounds, 597: 129 – 135.
16. Karunakaran, C. and Kalaivani, S. (2014).
Enhanced visible-light photocatalysis by hydrothermally synthesized thallium
doped bismuth vanadate nanoparticle. Materials
Science in Semiconductor Processing, 27: 352 – 361.
17. Ju, P., Wang, P., Li, B., Fan, H., Ai, S.,
Zhang, D. and Wang, Y. (2014). A novel calcined Bi2WO6/BiVO4
heterojunction photocatalyst with highly enhanced photocatalytic activity, Chemical Engineering Journal, 236: 430 –
437.
18. Min, S., Wang, F., Jin, Z. and Xu, J. (2014).
Cu2O nanoparticles decorated BiVO4 as an effective
visible light driven p-n heterojunction photocatalyst for methylene blue
degradation, Superlattices and
Microstructures, 74: 294 – 307.
19. Gao, X. M., Wu,
Y. F., Wang, J., Fu, F., Zhang, L. P. and Niu, F. X. (2011). The preparation of
CuO-BiVO4 and its enhanced photocatalytic properties for
degradation of phenol. Advanced Materials
Research, 356 – 360: 1253 – 1257.
20. Cho, S. K., Park, H. S., Lee, H. C., Nam, K.
M. and Bard, A. J. (2013). Metal doping of BiVO4 by composite
electrodeposition with improved photoelectrochemical water oxidation. Journal of Physical Chemistry C, 117:
23048 – 23056.
21. Jiang,
H. Q., Endo, H., Natori, H., Nagai, M. and Kobayashi, K. (2009). Fabrication and efficient photocatalytic
degradation of methylene blue over CuO/BiVO4 composite under
visible-light irradiation. Materials
Research Bulletin, 44(3): 700 – 706.
22. Kohtani, S.,
Hiro, J., Yamamoto, N., Kudo, A., Tokumura, K. and Nakagaki, R. (2005).
Adsorptive and photocatalytic properties of Ag-loaded BiVO4 on the
degradation of 4-n-alkylphenols under visible light
irradiation. Catalysis Communications, 6(3):
185 – 189.
23. Das, R., Sarkar, S., Chakraborty, S., Choi,
H. and Bhattacharjee, C. (2014). Remediation of antiseptic components in
wastewater by photocatalysis using TiO2 nanoparticle. Industrial and Engineering Chemical Research,
53(8): 3012 – 3020.