Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1382 - 1389

DOI: http://dx.doi.org/10.17576/mjas-2016-2006-17

 

 

 

MICROWAVE-ASSISTED SYNTHESIS OF MESOPOROUS SILICA NANOPARTICLES AS A DRUG DELIVERY VEHICLE

 

(Sintesis Partikel Nano Silika Berliang Meso Dibantu Gelombang Mikro Sebagai Medium Penyebaran Ubat)

 

Nur Hidayatul Nazirah Kamarudin 1*, Aishah Abdul Jalil2,3, Sugeng Triwahyono4, Sharifah Najiha Timmiati5

 

1Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Department of Chemical Engineering, Faculty of Chemical and Energy Engineering

3Centre of Hydrogen Energy, Institute of Future Energy

4Department of Chemistry, Faculty of Science

Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

5Institute of Fuel Cell,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: nhnazirah@ukm.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

Nanotechnology has been utilized in medicine for therapeutic drug delivery and the development of treatments for a variety of diseases and disorders. Mesoporous silica nanoparticles (MSN), which combine both unique properties of nanomaterials and mesostructured substances, have aroused special attention in biomedical research field due to its great advantages in many aspects such as well biocompatible, unique properties of tunable pore size and structure, large surface areas and pore volumes, controllable morphology and modifiable surfaces, high chemical and thermal stabilities. In this study, the microwave was utilized to synthesize MSN under 100 W, 300 W and 450 W heating powers. All MSNs was tested for adsorption and release of an anti-inflammatory and anti-cancer drug, ibuprofen. The characterization revealed that the MSN prepared under 450 W (MSN450) produced the most ordered and prominent mesoporous structure compared to lower power applied. MSN450 exhibited the highest ibuprofen adsorption, followed by MSN300 and MSN100, confirming that more ordered MSN demonstrated higher adsorptivity toward ibuprofen. For the release study, MSN450 showed the slowest release rate of ibuprofen, followed by MSN300 and MSN100. All MSNs was found to exhibit good activity for the ibuprofen adsorption and release.

 

Keywords:  microwave, mesoporous silica, ibuprofen, adsorption, drug delivery

 

Abstrak

Teknologi nano telah digunakan dalam bidang perubatan untuk penyampaian ubat terapeutik dan pembangunan rawatan untuk pelbagai penyakit dan gangguan. Partikel nano silika mesoliang, yang menggabungkan kedua-dua ciri-ciri yang unik bahan nano dan bahan struktur meso, telah membangkitkan perhatian khusus dalam bidang penyelidikan bioperubatan kerana kelebihan yang besar dalam banyak aspek seperti bioserasi, ciri-ciri unik bolehubah saiz liang dan struktur, kawasan permukaan dan isipadu liang yang besar, morfologi bolehkawal dan permukaan boleh ubahsuai, serta tinggi kestabilan kimia dan haba. Dalam kajian ini, gelombang mikro telah digunakan untuk mensintesis partikel nano silika mesoliang (MSN) dibawah kuasa pemanasan 100 W, 300 W dan 450 W. Semua MSN telah diuji untuk penjerapan dan pembebasan ubat anti-radang dan anti-kanser, ibuprofen. Pencirian mendedahkan bahawa MSN yang disediakan di bawah 450 W (MSN450) menghasilkan struktur paling tersusun dan terbaik dibandingkan dengan kuasa lebih rendah. MSN450 telah mencapai penjerapan ibuprofen tertinggi, diikuti dengan MSN300 dan MSN100, mengesahkan bahawa MSN yang lebih tersusun menunjukkan penjerapan ibuprofen lebih tinggi. Untuk kajian pembebasan, MSN450 menunjukkan kadar pembebasan ibuprofen paling rendah, diikuti dengan MSN300 dan MSN100. Semua MSN ditemui mencapai keaktifan yang baik untuk penjerapan dan pembebasan ibuprofen.

 

Kata kunci:  gelombang mikro, silica berliang meso, ibuprofen, penjerapan, penyampaian ubat

 

References

1.       Sayari, A. and Hamoudi, S. (2001). Periodic mesoporous silica-based organic-inorganic nanocomposite materials. Chemistry of Materials, 13(10): 3151 – 3168.

2.       Liu, X., Li, J., Zhou, L., Huang, D. and Zhou, Y. (2005). Adsorption of CO2, CH4 and N2 on ordered mesoporous silica molecular sieve. Chemical Physics Letters, 415(4-6): 198 – 201.

3.       Karim, A. H., Jalil, A. A., Triwahyono, S., Sidik, S. M., Kamarudin, N. H. N., Jusoh, R., Jusoh, N. W. C. and Hameed, B. H. (2012). Amino modified mesostructured silica nanoparticles for efficient adsorption of methylene blue. Journal of Colloid and Interface Science, 386(1): 307 – 314.

4.       Yu, Q., Hui, J., Wang, P., Xu, B., Zhuang, J. and Wang, X. (2012). Hydrothermal synthesis of mesoporous silica spheres: Effect of the cooling process. Nanoscale, 4: 7114 – 7120.

5.       Newalkar, B. L., Olanrewaju, J. and Komarneni, S. (2001). Microwave-hydrothermal synthesis and characterization of zirconium substituted SBA-15 mesoporous silica. The Journal of Physical Chemistry B, 105: 8356 – 8360.

6.       Hwang, Y. K., Chang, J. S., Kwon, Y. U. and Park, S. E. (2004). Microwave synthesis of cubic mesoporous silica SBA-16. Microporous and Mesoporous Materials, 68: 21 – 27.

7.       Jalil, A. A. Kurono, N. and Tokuda, M. (2002). Synthesis of the precursor of anti-inflammatory agents by cross-coupling using electrogenerated highly reactive zinc, Synthesis, 18: 2681 – 2686.

8.       Ballem, M. A., Cordoba, J. M. and Oden, M. (2010). Influence of synthesis temperature on morphology of SBA-16 mesoporous materials with a three-dimensional pore system. Microporous and Mesoporous Materials, 129: 106 – 111.

9.       Chen, B., Wang, Z., Quan, G., Peng, X., Pan, X., Wang, R., Xu, Y., Li, G. and Wu, C. (2012). In vitro and in vivo evaluation of ordered mesoporous silica as a novel adsorbent in liquisolid formulation. International Journal of Nanomedicine, 7: 199 – 209.

10.    Wu C. G. and Bein, T. (1996). Microwave synthesis of molecular sieve MCM-41. Chemical Communications, 925 – 926.

11.    Heikkila, T., Santos, H. A., Kumar, N., Murzin, D.Y., Salonen, J., Laaksonen, T., Peltonen, L., Hirvonen, J. and Lehto, V. P. (2010). Cytotoxicity study of ordered mesoporous silica MCM-41 and SBA-15 microparticles on Caco-2 cells. European Journal of Pharmaceutics and Biopharmaceutics, 74: 483 –494.

12.    Acharya, S. and Singh, K. (2011). Microwave-assisted chemical reduction routes for direct synthesis of (fct) L10 Phase of Fe-Pt. Journal of Microwave Power Electromagnetic Energy, 45: 63 – 69.

13.    Hayes, B. L. (2002). Microwave synthesis: Chemistry at the speed of light. CEM Publishing: Matthews, NC.

14.    Yu, C., Fan, J., Tian, B. and Zhao, D. (2004). Morphology development of mesoporous materials:  a colloidal phase separation mechanism. Chemistry of Materials, 16: 889 – 898.

15.    Cheng, H., Cheng, J., Zhang, Y. and Wang, Q. M. (2007). Large-scale fabrication of ZnO micro-and nano-structures by microwave thermal evaporation deposition. Journal of Crystal Growth, 299: 34 – 40.

16.    Qu, F., Zhu, G., Lin, H., Sun, J., Zhang, D., Li, S. and Qiu, S. (2006). Drug self-templated synthesis of ibuprofen/mesoporous silica for sustained release. European Journal of Inorganic Chemistry, 19: 3943 – 3947.

17.    Qu, F., Zhu, G., Lin, H., Zhang, W., Sun, J., Li, S. and Qiu, S. (2006). A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials. Journal of Solid State Chemistry. 179: 2027 – 2035.

 




Previous                    Content                    Next