Malaysian
Journal of Analytical Sciences Vol 20 No 6 (2016): 1382 - 1389
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-17
MICROWAVE-ASSISTED
SYNTHESIS OF MESOPOROUS SILICA NANOPARTICLES AS A DRUG DELIVERY VEHICLE
(Sintesis
Partikel Nano Silika Berliang Meso Dibantu Gelombang Mikro Sebagai Medium
Penyebaran Ubat)
Nur Hidayatul
Nazirah Kamarudin 1*, Aishah Abdul Jalil2,3, Sugeng
Triwahyono4, Sharifah Najiha Timmiati5
1Department of Chemical and Process Engineering,
Faculty of Engineering and Built Environment,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Department
of Chemical Engineering, Faculty of Chemical and Energy Engineering
3Centre of Hydrogen Energy,
Institute of Future Energy
4Department of
Chemistry, Faculty of Science
Universiti Teknologi Malaysia, 81310 UTM Johor
Bahru, Johor, Malaysia
5Institute of Fuel Cell,
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
*Corresponding author: nhnazirah@ukm.edu.my
Received: 21
October 2015; Accepted: 14 June 2016
Abstract
Nanotechnology has been utilized in
medicine for therapeutic drug delivery and the development of treatments for a
variety of diseases and disorders. Mesoporous silica nanoparticles (MSN), which
combine both unique properties of nanomaterials and mesostructured substances,
have aroused special attention in biomedical research field due to its great
advantages in many aspects such as well biocompatible, unique properties of
tunable pore size and structure, large surface areas and pore volumes, controllable
morphology and modifiable surfaces, high chemical and thermal stabilities. In
this study, the microwave was utilized to synthesize MSN under 100 W, 300 W and
450 W heating powers. All MSNs was tested for adsorption and release of an
anti-inflammatory and anti-cancer drug, ibuprofen. The characterization
revealed that the MSN prepared under 450 W (MSN450) produced the most ordered
and prominent mesoporous structure compared to lower power applied. MSN450
exhibited the highest ibuprofen adsorption, followed by MSN300 and MSN100,
confirming that more ordered MSN demonstrated higher adsorptivity toward
ibuprofen. For the release study, MSN450 showed the slowest release rate of
ibuprofen, followed by MSN300 and MSN100. All MSNs was found to exhibit good activity
for the ibuprofen adsorption and release.
Keywords: microwave,
mesoporous silica, ibuprofen, adsorption, drug delivery
Abstrak
Teknologi nano
telah digunakan dalam bidang perubatan untuk penyampaian ubat terapeutik dan
pembangunan rawatan untuk pelbagai penyakit dan gangguan. Partikel nano silika
mesoliang, yang menggabungkan kedua-dua ciri-ciri yang unik bahan nano dan
bahan struktur meso, telah membangkitkan perhatian khusus dalam bidang
penyelidikan bioperubatan kerana kelebihan yang besar dalam banyak aspek
seperti bioserasi, ciri-ciri unik bolehubah saiz liang dan struktur, kawasan
permukaan dan isipadu liang yang besar, morfologi bolehkawal dan permukaan
boleh ubahsuai, serta tinggi kestabilan kimia dan haba. Dalam kajian ini,
gelombang mikro telah digunakan untuk mensintesis partikel nano silika
mesoliang (MSN) dibawah kuasa pemanasan 100 W, 300 W dan 450 W. Semua MSN telah
diuji untuk penjerapan dan pembebasan ubat anti-radang dan anti-kanser,
ibuprofen. Pencirian mendedahkan bahawa MSN yang disediakan di bawah 450 W (MSN450)
menghasilkan struktur paling tersusun dan terbaik dibandingkan dengan kuasa
lebih rendah. MSN450 telah mencapai penjerapan ibuprofen tertinggi,
diikuti dengan MSN300 dan MSN100, mengesahkan bahawa MSN
yang lebih tersusun menunjukkan penjerapan ibuprofen lebih tinggi. Untuk kajian
pembebasan, MSN450 menunjukkan kadar pembebasan ibuprofen paling
rendah, diikuti dengan MSN300 dan MSN100. Semua MSN
ditemui mencapai keaktifan yang baik untuk penjerapan dan pembebasan ibuprofen.
Kata kunci: gelombang mikro, silica berliang meso, ibuprofen, penjerapan, penyampaian
ubat
References
1.
Sayari, A. and Hamoudi, S. (2001). Periodic mesoporous
silica-based organic-inorganic nanocomposite materials. Chemistry of Materials, 13(10): 3151 – 3168.
2.
Liu, X., Li, J., Zhou, L., Huang, D. and Zhou, Y. (2005).
Adsorption of CO2, CH4 and N2 on ordered mesoporous
silica molecular sieve. Chemical Physics
Letters, 415(4-6): 198 – 201.
3.
Karim,
A. H., Jalil, A. A., Triwahyono, S., Sidik, S. M., Kamarudin, N. H. N., Jusoh,
R., Jusoh, N. W. C. and Hameed, B. H. (2012). Amino modified mesostructured
silica nanoparticles for efficient adsorption of methylene blue. Journal of Colloid and Interface Science,
386(1): 307 – 314.
4.
Yu, Q., Hui, J., Wang, P., Xu, B., Zhuang, J. and
Wang, X. (2012). Hydrothermal synthesis of mesoporous silica spheres: Effect of
the cooling process. Nanoscale, 4: 7114 – 7120.
5.
Newalkar, B. L., Olanrewaju, J. and Komarneni, S.
(2001). Microwave-hydrothermal synthesis and characterization of zirconium
substituted SBA-15 mesoporous silica. The
Journal of Physical Chemistry B, 105: 8356 –
8360.
6.
Hwang,
Y. K., Chang, J. S., Kwon, Y. U. and Park, S. E.
(2004). Microwave synthesis of cubic mesoporous silica SBA-16. Microporous and Mesoporous Materials,
68: 21 – 27.
7.
Jalil,
A. A. Kurono, N. and Tokuda, M. (2002). Synthesis of the precursor of
anti-inflammatory agents by cross-coupling using electrogenerated highly
reactive zinc, Synthesis, 18: 2681 – 2686.
8.
Ballem, M. A., Cordoba, J. M. and Oden, M. (2010).
Influence of synthesis temperature on morphology of SBA-16 mesoporous materials
with a three-dimensional pore system. Microporous and Mesoporous Materials,
129: 106 – 111.
9.
Chen, B., Wang, Z., Quan, G., Peng, X., Pan, X., Wang, R., Xu, Y.,
Li, G. and Wu, C. (2012). In vitro and in vivo evaluation of ordered mesoporous
silica as a novel adsorbent in liquisolid formulation. International Journal of Nanomedicine, 7: 199 – 209.
10.
Wu C. G. and Bein, T. (1996). Microwave synthesis of molecular
sieve MCM-41. Chemical Communications,
925 – 926.
11.
Heikkila,
T., Santos, H. A., Kumar, N., Murzin, D.Y., Salonen, J., Laaksonen, T.,
Peltonen, L., Hirvonen, J. and Lehto, V. P. (2010). Cytotoxicity study of
ordered mesoporous silica MCM-41 and SBA-15 microparticles on Caco-2 cells. European Journal of Pharmaceutics and
Biopharmaceutics, 74: 483 –494.
12.
Acharya,
S. and Singh, K. (2011). Microwave-assisted chemical reduction routes for
direct synthesis of (fct) L10 Phase of Fe-Pt. Journal of Microwave Power Electromagnetic Energy, 45: 63 – 69.
13.
Hayes,
B. L. (2002). Microwave synthesis: Chemistry at the speed of light. CEM Publishing: Matthews, NC.
14.
Yu,
C., Fan, J., Tian, B. and Zhao, D. (2004). Morphology development of mesoporous
materials: a colloidal phase separation mechanism. Chemistry of Materials, 16: 889 – 898.
15.
Cheng,
H., Cheng, J., Zhang, Y. and Wang, Q. M. (2007). Large-scale fabrication of ZnO
micro-and nano-structures by microwave thermal evaporation deposition. Journal of Crystal Growth, 299: 34 – 40.
16.
Qu,
F., Zhu, G., Lin, H., Sun, J., Zhang, D., Li, S. and Qiu, S. (2006). Drug self-templated
synthesis of ibuprofen/mesoporous silica for sustained release. European Journal of Inorganic Chemistry,
19: 3943 – 3947.
17.
Qu,
F., Zhu, G., Lin, H., Zhang, W., Sun, J., Li, S. and Qiu, S. (2006). A
controlled release of ibuprofen by systematically tailoring the morphology of
mesoporous silica materials. Journal of
Solid State Chemistry. 179: 2027 – 2035.