Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1390 - 1397

DOI: http://dx.doi.org/10.17576/mjas-2016-2006-18

 

 

 

METHANE ADSORPTION PERFORMANCE OF THE PALM KERNEL SHELL-DERIVED CARBON MATERIAL ACTIVATED USING CO2-STEAM SEQUENTIAL COMBINATION

 

(Prestasi Penjerapan Gas Metana oleh Karbon Teraktif Isirong Kelapa Sawit dengan Menggunakan Gabungan CO2-Stim Secara Turutan)

 

Mohd Saufi Md Zaini and Syed Shatir A. Syed Hassan*

 

Faculty of Chemical Engineering,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

 

*Corresponding author: shatir@salam.uitm.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

A study was conducted to prepare activated carbon from ZnCl2-treated oil palm kernel shell using the sequential combination of carbon dioxide and steam (CO2 + steam) as activated agent. The development of pores of activated carbon and methane adsorption on the prepared activated carbon were investigated. The results show that the sequential combination of CO2 and steam was a good combination producing activated carbon with high total pore volume of 1.0 cm3/g and BET surface area of 1548.0 m2/g. The resultant activated carbon contained microporous and mesoporous structure with a nearly balance volume percentage. The highest methane uptake in this study was 145.89 V/V at 10 bar and ambient temperature.

 

Keywords:  activated carbon, palm kernel shell, methane adsorption, porosity development

 

Abstrak

Satu kajian telah dijalankan bagi menyediakan karbon teraktif daripada isirong kelapa sawit yang dirawat bersama ZnCl2 dengan menggunakan agen pengaktifan karbon dioksida dan stim secara berturutan. Dalam kajian ini, pembangunan liang pada karbon teraktif dan penjerapan gas metana telah dikaji. Hasil dari kajian ini menunjukkan bahawa kombinasi secara urutan bagi gas karbon dioksida dan stim merupakan kombinasi agen pengakifan yang baik dan menghasilkan karbon teraktif yang mempunyai jumlah isipadu liang yang tinggi iaitu 1.0 cm3/g dan luas kawasan BET sebanyak 1548.0 m2/g. Karbon teraktif yang terhasil juga mempunyai kandungan liang mikro dan liang meso yang hampir seimbang. Hasil kajian ini, penjerapan gas metana yang tertinggi adalah 145.89 V/V pada 10 bar dan suhu ambien.

 

Kata kunci :  karbon teraktif, isirong kelapa sawit, penjerapan gas metana, pembangunan liang

 

References

1.       Solar, C., Blanco, A. G., Vallone, A. and Sapag, K. (2010). Adsorption of methane in porous materials as the basis for the storage of natural gas. Natural Gas: pp. 205.

2.       Arami-Niya, A., Daud, W. M. A. W. and Mjalli, F. S. (2010). Using granular activated carbon prepared from oil palm shell by ZnCl2 and physical activation for methane adsorption. Journal of Analytical and Applied Pyrolysis, 89: 197 – 203.

3.       Najibi, H., Chapoy, A. and Tohidi, B. (2008). Methane/natural gas storage and delivered capacity for activated carbons in dry and wet conditions. Fuel, 87(1): 7 – 13.

4.       Ahmadpour, A., Okhovat, A. and Mahboub, M. D. (2013). Pore size distribution analysis of activated carbons prepared from coconut shell using methane adsorption data. Journal of Physics and Chemistry of Solids, 74(6): 886 – 891.

5.       Molina-Sabio, M., Gonzalez, M. T., Rodriguez-Reinoso, F. and Sepúlveda-Escribano, A. (1996). Effect of steam and carbon dioxide activation in the micropore size distribution of activated carbon. Carbon, 34(4): 505 – 509.

6.       Rodriguez-Reinoso, F. and Molina-Sabio, M. (1992). Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon, 30(7): 1111 – 1118.

7.       Minkova, V., Marinov, S. P., Zanzi, R., Björnbom, E., Budinova, T., Stefanova, M. and Lakov, L. (2000). Thermochemical treatment of biomass in a flow of steam or in a mixture of steam and carbon dioxide. Fuel Processing Technology, 62(1): 45 – 52.

8.       Carrott, P. J. M., Carrott, M. R., Guerrero, C. I. and Delgado, L. A. (2008). Reactivity and porosity development during pyrolysis and physical activation in CO2 or steam of kraft and hydrolytic lignins. Journal of Analytical and Applied Pyrolysis, 82(2): 264 – 271.

9.       Manocha, S. M. (2003). Porous Carbon. Department of Materials Science, Sandar Patel Univeristy, India.

10.    Herawan, S. G., Hadi, M. S., Ayob, M. R. and Putra, A. (2013). Characterization of activated carbons from oil-palm shell by CO2 activation with no holding carbonization temperature. The Scientific World Journal, 2013: 1 – 7.

11.    Rodriguez-Reinoso, F., Martin-Martinez, J. M., Prado-Burguete, C. and McEnaney, B. (1987). A standard adsorption isotherm for the characterization of activated carbons. Journal of Physical Chemistry, 91: 515 – 516.

12.    Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin, G. and Sing, K. S. (2013). Adsorption by powders and porous solids: principles, methodology and applications. 2nd ed. London: Academic Press Inc.(London) Ltd.

13.    Kundu, A., Gupta, B. S., Hashim, M. A. and Redzwan, G. (2015). Taguchi optimization approach for production of activated carbon from phosphoric acid impregnated palm kernel shell by microwave heating. Journal of Cleaner Production, 105: 420 – 427.

14.    Guo, J. and Lua, A. C. (2000). Textural characterization of activated carbons prepared from oil-palm stones pre-treated with various impregnating agents. Journal of Porous Materials, 7(4): 491 – 497.

15.    Arami-Niya, A., Daud, W. M. A. W. and Mjalli, F. S. (2011). Comparative study of the textural characteristics of oil palm shell activated carbon produced by chemical and physical activation for methane adsorption. Chemical Engineering Research and Design, 89(6): 657 – 664.

16.    González, J. F., Encinar, J. M., González-García, C. M., Sabio, E., Ramiro, A., Canito, J. L. and Gañán, J. (2006). Preparation of activated carbons from used tyres by gasification with steam and carbon dioxide. Applied Surface Science, 252(17): 5999 – 6004.

17.    Prasetyo, I., Yunanto, R., & Ariyanto, T. (2011). Methane storage by methane hydrate formation within water-saturatedporous carbon: The effect of mesoporosity. Chemical Engineering Department, Gadjah Mada University, Indonesia.

18.    Mosher, K. (2011). The impact of pore size on methane and CO2 adsorption in carbon. Stanford University, United Kingdom.

19.    Almansa, C., Molina-Sabio, M. and Rodríguez-Reinoso, F. (2004). Adsorption of methane into ZnCl2-activated carbon derived discs. Microporous and Mesoporous Materials, 76(1): 185 – 191.

20.    Daud, W., Ashri, W. M., Ali, W. S. W. and Sulaiman, M. Z. (2003). Effect of activation temperature on pore development in activated carbon produced from palm shell. Journal of Chemical Technology and Biotechnology, 78(1): 1 – 5.

21.    Azevedo, D. C., Araujo, J. C. S., Bastos-Neto, M., Torres, A. E. B., Jaguaribe, E. F. and Cavalcante, C. L. (2007). Microporous activated carbon prepared from coconut shells using chemical activation with zinc chloride. Microporous and Mesoporous Materials, 100(1): 361 – 364.

 




Previous                    Content                    Next