Malaysian
Journal of Analytical Sciences Vol 20 No 6 (2016): 1390 - 1397
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-18
METHANE
ADSORPTION PERFORMANCE OF THE PALM KERNEL SHELL-DERIVED CARBON MATERIAL
ACTIVATED USING CO2-STEAM SEQUENTIAL COMBINATION
(Prestasi Penjerapan
Gas Metana oleh Karbon Teraktif Isirong Kelapa Sawit dengan Menggunakan
Gabungan CO2-Stim Secara Turutan)
Mohd Saufi
Md Zaini and Syed Shatir A. Syed Hassan*
Faculty
of Chemical Engineering,
Universiti
Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
*Corresponding author: shatir@salam.uitm.edu.my
Received: 21
October 2015; Accepted: 14 June 2016
Abstract
A study was conducted to prepare activated carbon from ZnCl2-treated
oil palm kernel shell using the sequential combination of carbon dioxide and
steam (CO2 + steam) as activated agent. The development of pores of
activated carbon and methane adsorption on the prepared activated carbon were
investigated. The results show that the sequential combination of CO2
and steam was a good combination producing activated carbon with high total
pore volume of 1.0 cm3/g and BET surface area of 1548.0 m2/g.
The resultant activated carbon contained microporous and mesoporous structure
with a nearly balance volume percentage. The highest methane uptake in this
study was 145.89 V/V at 10 bar and ambient temperature.
Keywords: activated
carbon, palm kernel shell, methane adsorption, porosity development
Abstrak
Satu kajian telah dijalankan bagi menyediakan karbon teraktif daripada
isirong kelapa sawit yang dirawat bersama ZnCl2 dengan menggunakan
agen pengaktifan karbon dioksida dan stim secara berturutan. Dalam kajian ini,
pembangunan liang pada karbon teraktif dan penjerapan gas metana telah dikaji.
Hasil dari kajian ini menunjukkan bahawa kombinasi secara urutan bagi gas karbon
dioksida dan stim merupakan kombinasi agen pengakifan yang baik dan
menghasilkan karbon teraktif yang mempunyai jumlah isipadu liang yang tinggi
iaitu 1.0 cm3/g dan luas kawasan BET sebanyak 1548.0 m2/g.
Karbon teraktif yang terhasil juga mempunyai kandungan liang mikro dan liang meso
yang hampir seimbang. Hasil kajian ini, penjerapan gas metana yang tertinggi
adalah 145.89 V/V pada 10 bar dan suhu ambien.
Kata kunci : karbon teraktif,
isirong kelapa sawit, penjerapan gas metana, pembangunan liang
References
1. Solar, C., Blanco, A. G., Vallone, A. and Sapag, K.
(2010). Adsorption of methane in porous materials as the basis for the storage
of natural gas. Natural Gas: pp. 205.
2. Arami-Niya, A., Daud, W. M. A. W. and Mjalli, F. S.
(2010). Using granular activated carbon prepared from oil palm shell by ZnCl2
and physical activation for methane adsorption. Journal of Analytical and Applied Pyrolysis, 89: 197 – 203.
3. Najibi, H., Chapoy, A. and Tohidi, B. (2008).
Methane/natural gas storage and delivered capacity for activated carbons in dry
and wet conditions. Fuel, 87(1): 7 – 13.
4. Ahmadpour, A., Okhovat, A. and Mahboub, M. D.
(2013). Pore size distribution analysis of activated carbons prepared from
coconut shell using methane adsorption data. Journal of Physics and Chemistry of Solids, 74(6): 886 – 891.
5. Molina-Sabio, M., Gonzalez, M. T.,
Rodriguez-Reinoso, F. and Sepúlveda-Escribano, A. (1996). Effect of steam and
carbon dioxide activation in the micropore size distribution of activated
carbon. Carbon, 34(4): 505 – 509.
6. Rodriguez-Reinoso, F. and Molina-Sabio, M. (1992).
Activated carbons from lignocellulosic materials by chemical and/or physical
activation: an overview. Carbon,
30(7): 1111 – 1118.
7. Minkova, V., Marinov, S. P., Zanzi, R., Björnbom, E.,
Budinova, T., Stefanova, M. and Lakov, L. (2000). Thermochemical treatment of
biomass in a flow of steam or in a mixture of steam and carbon dioxide. Fuel Processing Technology, 62(1): 45 – 52.
8. Carrott, P. J. M., Carrott, M. R., Guerrero, C. I.
and Delgado, L. A. (2008). Reactivity and porosity development during pyrolysis
and physical activation in CO2 or steam of kraft and hydrolytic
lignins. Journal of Analytical and
Applied Pyrolysis, 82(2): 264 – 271.
9. Manocha, S. M. (2003). Porous Carbon. Department of
Materials Science, Sandar Patel Univeristy, India.
10. Herawan, S. G., Hadi, M. S., Ayob, M. R. and Putra,
A. (2013). Characterization of activated carbons from oil-palm shell by CO2
activation with no holding carbonization temperature. The Scientific World Journal, 2013: 1 – 7.
11. Rodriguez-Reinoso, F., Martin-Martinez, J. M.,
Prado-Burguete, C. and McEnaney, B. (1987). A standard adsorption isotherm for
the characterization of activated carbons. Journal
of Physical Chemistry, 91: 515 – 516.
12. Rouquerol, J., Rouquerol, F., Llewellyn, P., Maurin,
G. and Sing, K. S. (2013). Adsorption by powders and porous solids: principles,
methodology and applications. 2nd ed. London: Academic Press Inc.(London) Ltd.
13. Kundu, A., Gupta, B. S., Hashim, M. A. and Redzwan,
G. (2015). Taguchi optimization approach for production of activated carbon
from phosphoric acid impregnated palm kernel shell by microwave heating. Journal of Cleaner Production, 105: 420
– 427.
14. Guo, J. and Lua, A. C. (2000). Textural
characterization of activated carbons prepared from oil-palm stones pre-treated
with various impregnating agents. Journal
of Porous Materials, 7(4): 491 – 497.
15. Arami-Niya, A., Daud, W. M. A. W. and Mjalli, F. S.
(2011). Comparative study of the textural characteristics of oil palm shell
activated carbon produced by chemical and physical activation for methane
adsorption. Chemical Engineering Research
and Design, 89(6): 657 – 664.
16. González, J. F., Encinar, J. M., González-García, C.
M., Sabio, E., Ramiro, A., Canito, J. L. and Gañán, J. (2006). Preparation of
activated carbons from used tyres by gasification with steam and carbon
dioxide. Applied Surface Science,
252(17): 5999 – 6004.
17. Prasetyo, I., Yunanto, R., & Ariyanto, T.
(2011). Methane storage by methane hydrate formation within
water-saturatedporous carbon: The effect of mesoporosity. Chemical Engineering Department, Gadjah Mada University,
Indonesia.
18. Mosher, K. (2011).
The impact of pore size on methane and CO2 adsorption in carbon. Stanford
University, United Kingdom.
19. Almansa, C., Molina-Sabio, M. and Rodríguez-Reinoso,
F. (2004). Adsorption of methane into ZnCl2-activated carbon derived
discs. Microporous and Mesoporous
Materials, 76(1): 185 – 191.
20. Daud, W., Ashri, W. M., Ali, W. S. W. and Sulaiman,
M. Z. (2003). Effect of activation temperature on pore development in activated
carbon produced from palm shell. Journal
of Chemical Technology and Biotechnology, 78(1): 1 – 5.
21. Azevedo, D. C., Araujo, J. C. S., Bastos-Neto, M.,
Torres, A. E. B., Jaguaribe, E. F. and Cavalcante, C. L. (2007). Microporous
activated carbon prepared from coconut shells using chemical activation with
zinc chloride. Microporous and Mesoporous
Materials, 100(1): 361 – 364.