Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1413 - 1420

DOI: http://dx.doi.org/10.17576/mjas-2016-2006-21

 

 

 

EFFECT OF pH ON FLUX DECLINE DURING FRACTIONATION OF GLUCOSE FROM CELLULOSE HYDROLYSATE THROUGH A POLYSULFONE MEMBRANE

 

(Kesan pH pada Penurunan Fluks bagi Pemeringkatan Glukosa daripada Hidrolisis Selulosa Melalui Membran Polisulfon)

 

Masniroszaime Md Zain and Abdul Wahab Mohammad*

 

Department of Chemical Engineering and Process, Faculty of Engineering and Built Environment,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: drawm@ukm.edu.my 

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

Concentrating glucose after enzymatic hydrolysis of lignocellulosic biomass is an important step in order to prepare the stream to undergo the fermentation process. However, glucose itself can be inhibitor for the enzymatic hydrolysis, hence in situ glucose removal is recommended. Ultrafiltration represents a promising procedure for isolation of enzymes from hydrolysate and for the removal of glucose. One of the obstacles in successfully utilizing ultrafiltration’s membranes has been due to the membrane fouling.  The flux behavior of polysulfone (PSF) membrane was studied in concentrating glucose from cellulose hydrolysate during dead end ultrafiltration. Different pH of solutions was used and Kumar’s model was applied to analyse the fouling mechanism. The minimum fouling was obtained at pH solution above the IEP due to protein-protein and membrane-protein repulsions alleviating aggregation and fouling. Cake formation blocking was identified as the dominant mechanism for flux decline.

 

Keywords:  enzyme hydrolysis, lignocellulosic biomass, ultrafiltration, polysulfone, fouling

 

Abstrak

Pemekatan glukosa selepas hidrolisis enzim bagi penghasilan bioetanol daripada biojisim lignoselulosa merupakan langkah yang penting bagi penyediaan untuk proses fermentasi selanjutnya. Penuras ultra menjadi pilihan bagi kaedah yang berpotensi untuk penyekatan enzim dan penyingkiran glukosa daripada larutan hidrolisis. Namun, salah satu rintangan bagi penggunaan maksima bagi penuras ultra adalah kotoran. Kriteria fluks bagi membran polisulfon di kaji dari pemekatan glukosa oleh larutan hidrolisis selulosa di penuras ultra hujung mati. Larutan yang berlainan pH digunakan untuk mengkaji profil fluks dan model Kumar digunakan untuk menganalisis mekanisma kotoran. Kotoran yang minima diperolehi pada larutan yang mempunyai pH yang lebih tinggi daripada nilai titik isoelektrik larutan hidrolisis. Halangan pembentukan kek telah dikenalpasti sebagai mekanisma yang dominan bagi pengurangan fluks.

 

Kata kunci:  hidrolisis enzim, biojisim lignoselulosa, penuras ultra, polisulfon, kotoran

 

References

1.       Qi, B., Luo, J., Chen, G., Chen, X. and Wan, Y. (2012). Application of ultrafiltration and nanofiltration for recycling cellulase and concentrating glucose from enzymatic hydrolyzate of steam exploded wheat straw. Bioresource Technology, 104: 466 - 472.

2.       Ishola, M. M., Jahandideh, A., Haidarian, B., Brandberg, T. and Taherzadeh, M. J. (2013). Simultaneous saccharification, filtration and fermentation (SSFF): A novel method for bioethanol production from lignocellulosic biomass. Bioresource Technology, 133: 68 - 73.

3.       Narayanaswamy. N., D., P., Verma, S. and Kumar, S. (2013) Chapter 1: Biological pretreatment of lignocellulosic biomass for enzymatic saccharification, in Z. Fang (ed.), Pretreament techniques for biofuels and biorefineries. Springer Berlin Heidelberg: pp. 3 - 34).

4.       Ma, T., Kosa, M. and Sun, Q. (2014) Chapter 7: Fermentation to bioethanol/biobuthanol in A.J. Ragauskas (ed.) Materials for biofuels. World Scientific, 4: 155 - 185.

5.       Gautam, A. and Menkhaus, T. J. (2014) Performance evaluation and fouling analysis for reverse osmosis and nanofiltration membranes during processing of lignocellulosic biomass hydrolysate. Journal of Membrane Science, 451: 252 - 265.

6.       Hwang, K. J., Tsai, H.-Y. and Chen, S.-T. (2014). Enzymatic hydrolysis suspension cross-flow diafiltration using polysulfone hollow fiber module. Journal of Membrane Science, 454: 418 - 425.

7.       Maiti, S. K., Lukka Thuyavan, Y., Singh, S., Oberoi, H. S. and Agarwal, G. P. (2012). Modeling of the separation of inhibitory components from pretreated rice straw hydrolysate by nanofiltration membranes. Bioresource Technology, 114: 419 - 427.

8.       Echavarría, A. P., Ibarz, A., Conde, J. and Pagán, J. (2012). Enzyme recovery and effluents generated in the enzymatic  elimination  of  clogging  of  pectin  cake  in filtration process. Journal of Food Engineering, 111: 52 - 56.

9.       Wang, C., Li, Q., Tang, H., Yan, D., Zhou, W., Xing, J. and Wan, Y. (2012). Membrane fouling mechanism in ultrafiltration of succinic acid fermentation broth. Bioresource Technology, 116: 366 - 371.

10.    de Barros, S. T. D., Andrade, C. M. G., Mendes, E. S. and Peres, L. (2003). Study of fouling mechanism in pineapple juice clarification by ultrafiltration. Journal of Membrane Science, 215: 213 -224.

11.    Mahesh Kumar, S., Madhu, G.M. and Roy, S. (2007). Fouling behaviour, regeneration options and on-line control of biomass-based power plant effluents using microporous ceramic membranes. Separation and Purification Technology, 57: 25 - 36.

12.    Suhimi, N. M., Mohammad, A.W. and Jahim, J. M. (2013). Production and characterization of hydrolyzed collagen derived from enzymatic hydrolysis of type-B gelatin. Proceeding of the 8th  CIGR Section VI International Technical Symposium - Advanced Food Processing and Quality Management: pp 304.

13.    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248 - 254.

14.    Andersen, N., Johansen, K. S., Michelsen, M., Stenby, E. H., Krogh, K. B. R. M. and Olsson, L. (2008). Hydrolysis of cellulose using mono-component enzymes shows synergy during hydrolysis of phosphoric acid swollen cellulose (PASC), but competition on Avicel. Enzyme and Microbial Technology, 42: 362 - 370.

15.    Mulder, M. (2000). Basic principles of membrane technology. pp 387.

16.    Lim, Y. P. and Mohammad, A.W. (2012). Influence of pH and ionic strength during food protein ultrafiltration: elucidation of permeate flux behavior, fouling resistance, and mechanism. Separation Science and Technology, 47: 446 - 454.

17.    Lakra, R., Saranya, R., Thuyavan, Y. L., Sugashini, S., Begum, K. M. S. and Arthanareeswaran, G. (2013). Separation of acetic acid and reducing sugars from biomass derived hydrosylate using biopolymer blend polyethersulfone membrane. Separation and Purification Technology, 118: 853 - 861.

18.    Ribeiro, H. S., Janssen, J. J. M., Kobayashi, I. and Nakajima, M. (2010) Chapter 7: Membrane emulsification for food applications in Peinemann, K.V, Nunes, S. P. and Giorno, L. (eds.) Membrane for food applications: pp. 129 - 131.

19.    Sirkar, K.K. (2014) Separation of molecules, macromolecules and particles. Cambridge University Press: pp. 295 - 305.

 




Previous                    Content                    Next