Malaysian
Journal of Analytical Sciences Vol 20 No 6 (2016): 1413 - 1420
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-21
EFFECT
OF pH ON FLUX DECLINE DURING FRACTIONATION OF GLUCOSE FROM CELLULOSE
HYDROLYSATE THROUGH A POLYSULFONE MEMBRANE
(Kesan
pH pada Penurunan Fluks bagi Pemeringkatan Glukosa daripada Hidrolisis Selulosa
Melalui Membran Polisulfon)
Masniroszaime Md
Zain and Abdul Wahab Mohammad*
Department
of Chemical Engineering and Process, Faculty of Engineering and Built
Environment,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
*Corresponding author: drawm@ukm.edu.my
Received: 21
October 2015; Accepted: 14 June 2016
Abstract
Concentrating glucose after enzymatic
hydrolysis of lignocellulosic biomass is an important step in order to prepare
the stream to undergo the fermentation process. However, glucose itself can be
inhibitor for the enzymatic hydrolysis, hence in situ glucose removal is
recommended. Ultrafiltration represents a promising procedure for isolation of
enzymes from hydrolysate and for the removal of glucose. One of the obstacles
in successfully utilizing ultrafiltration’s membranes has been due to the
membrane fouling. The flux behavior of
polysulfone (PSF) membrane was studied in concentrating glucose from cellulose
hydrolysate during dead end ultrafiltration. Different pH of solutions was used
and Kumar’s model was applied to analyse the fouling mechanism. The minimum
fouling was obtained at pH solution above the IEP due to protein-protein and
membrane-protein repulsions alleviating aggregation and fouling. Cake formation
blocking was identified as the dominant mechanism for flux decline.
Keywords: enzyme hydrolysis, lignocellulosic biomass,
ultrafiltration, polysulfone, fouling
Abstrak
Pemekatan glukosa selepas hidrolisis enzim bagi penghasilan bioetanol
daripada biojisim lignoselulosa merupakan langkah yang penting bagi penyediaan
untuk proses fermentasi selanjutnya. Penuras ultra menjadi pilihan bagi kaedah
yang berpotensi untuk penyekatan enzim dan penyingkiran glukosa daripada
larutan hidrolisis. Namun, salah satu rintangan bagi penggunaan maksima bagi
penuras ultra adalah kotoran. Kriteria fluks bagi membran polisulfon di kaji
dari pemekatan glukosa oleh larutan hidrolisis selulosa di penuras ultra hujung
mati. Larutan yang berlainan pH digunakan untuk mengkaji profil fluks dan model
Kumar digunakan untuk menganalisis mekanisma kotoran. Kotoran yang minima
diperolehi pada larutan yang mempunyai pH yang lebih tinggi daripada nilai
titik isoelektrik larutan hidrolisis. Halangan pembentukan kek telah
dikenalpasti sebagai mekanisma yang dominan bagi pengurangan fluks.
Kata kunci: hidrolisis enzim, biojisim lignoselulosa, penuras ultra, polisulfon,
kotoran
References
1. Qi, B., Luo, J., Chen, G.,
Chen, X. and Wan, Y. (2012). Application of ultrafiltration and nanofiltration
for recycling cellulase and concentrating glucose from enzymatic hydrolyzate of
steam exploded wheat straw. Bioresource
Technology, 104: 466 - 472.
2.
Ishola, M. M., Jahandideh, A., Haidarian, B., Brandberg,
T. and Taherzadeh, M. J. (2013). Simultaneous saccharification, filtration and
fermentation (SSFF): A novel method for bioethanol production from
lignocellulosic biomass. Bioresource
Technology, 133: 68 - 73.
3.
Narayanaswamy. N., D., P., Verma, S. and Kumar, S.
(2013) Chapter 1: Biological pretreatment of lignocellulosic biomass for
enzymatic saccharification, in Z. Fang (ed.), Pretreament techniques for
biofuels and biorefineries. Springer Berlin Heidelberg: pp. 3 - 34).
4.
Ma, T., Kosa, M. and Sun, Q. (2014) Chapter 7:
Fermentation to bioethanol/biobuthanol in A.J. Ragauskas (ed.) Materials for
biofuels. World Scientific, 4: 155 - 185.
5.
Gautam, A. and Menkhaus, T. J. (2014) Performance
evaluation and fouling analysis for reverse osmosis and nanofiltration
membranes during processing of lignocellulosic biomass hydrolysate. Journal of Membrane Science, 451: 252 - 265.
6.
Hwang, K. J., Tsai, H.-Y. and Chen, S.-T. (2014). Enzymatic
hydrolysis suspension cross-flow diafiltration using polysulfone hollow fiber
module. Journal of Membrane Science,
454: 418 - 425.
7.
Maiti, S. K., Lukka Thuyavan, Y., Singh, S., Oberoi, H.
S. and Agarwal, G. P. (2012). Modeling of the separation of inhibitory
components from pretreated rice straw hydrolysate by nanofiltration membranes. Bioresource Technology, 114: 419 - 427.
8.
Echavarría, A. P., Ibarz, A., Conde, J. and Pagán, J.
(2012). Enzyme recovery and effluents generated in the enzymatic elimination of clogging
of pectin cake
in filtration process. Journal of Food Engineering, 111: 52 - 56.
9.
Wang, C., Li, Q., Tang, H., Yan, D., Zhou, W., Xing, J.
and Wan, Y. (2012). Membrane fouling mechanism in ultrafiltration of succinic
acid fermentation broth. Bioresource
Technology, 116: 366 - 371.
10.
de Barros, S. T. D., Andrade, C. M. G., Mendes, E. S.
and Peres, L. (2003). Study of fouling mechanism in pineapple juice
clarification by ultrafiltration. Journal
of Membrane Science, 215: 213 -224.
11.
Mahesh Kumar, S., Madhu, G.M. and Roy, S. (2007). Fouling
behaviour, regeneration options and on-line control of biomass-based power
plant effluents using microporous ceramic membranes. Separation and Purification Technology, 57: 25 - 36.
12.
Suhimi, N. M., Mohammad, A.W. and Jahim, J. M. (2013). Production
and characterization of hydrolyzed collagen derived from enzymatic hydrolysis
of type-B gelatin. Proceeding of the 8th CIGR Section VI International Technical
Symposium - Advanced Food Processing and Quality Management: pp 304.
13.
Bradford, M. M. (1976). A rapid and sensitive method
for the quantitation of microgram quantities of protein utilizing the principle
of protein-dye binding. Analytical
Biochemistry, 72: 248 - 254.
14.
Andersen, N., Johansen, K. S., Michelsen, M., Stenby,
E. H., Krogh, K. B. R. M. and Olsson, L. (2008). Hydrolysis of cellulose using
mono-component enzymes shows synergy during hydrolysis of phosphoric acid
swollen cellulose (PASC), but competition on Avicel. Enzyme and Microbial Technology, 42: 362 - 370.
15.
Mulder, M. (2000). Basic principles of membrane
technology. pp 387.
16.
Lim, Y. P. and Mohammad, A.W. (2012). Influence of pH
and ionic strength during food protein ultrafiltration: elucidation of permeate
flux behavior, fouling resistance, and mechanism. Separation Science and Technology, 47: 446 - 454.
17.
Lakra, R., Saranya, R., Thuyavan, Y. L., Sugashini, S.,
Begum, K. M. S. and Arthanareeswaran, G. (2013). Separation of acetic acid and
reducing sugars from biomass derived hydrosylate using biopolymer blend
polyethersulfone membrane. Separation and
Purification Technology, 118: 853 - 861.
18.
Ribeiro, H. S., Janssen, J. J. M., Kobayashi, I. and
Nakajima, M. (2010) Chapter 7: Membrane emulsification for food applications in
Peinemann, K.V, Nunes, S. P. and Giorno, L. (eds.) Membrane for food
applications: pp. 129 - 131.
19.
Sirkar, K.K. (2014) Separation of molecules, macromolecules
and particles. Cambridge University Press: pp. 295 - 305.