Malaysian Journal of Analytical Sciences
Vol 20 No 6 (2016): 1405 - 1412
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-20
INFLUENCE
OF HIGHLY CONCENTRATED SODIUM HYDROXIDE (NaOH) TOWARDS FORMATION OF HIGHLY
ORDERED TIO2 NANOTUBES (TNT) STRUCTURE
(Pengaruh Kepekatan
Sodium Hidrosida (NaOH) yang Tinggi terhadap Pembentukan Struktur Bertertib Nanotiub
TiO2 (TNT))
Masturah
Abdullah1 and Siti Kartom Kamarudin1, 2*
1Fuel
Cell Institute
2Department
of Chemical and Process Engineering, Faculty of Engineering and Built
Environment
Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
*Corresponding
author: ctie@vlsi.eng.ukm.my
Received:
21 October 2015; Accepted: 14 June 2016
Abstract
In this study,
titanium dioxide nanotubes (TNT) were synthesis according to different concentration
of sodium hydroxide (NaOH). The main purpose of this study was to investigate
the effect of the high concentration NaOH towards formation of TiO2
nanotubes structure. TNT was synthesized via hydrothermal method that was
performed in a Teflon line stainless steel autoclave by using different
concentration of NaOH (6 M to 12 M). The hydrothermal time and temperature is
placed constantly for 24 hours and 110 oC respectively. The
characterization of TNT was performed by Field Emission Transmission Electron
Microscopy (FESEM), X-ray Diffraction (XRD), Fourier Transform Infrared
Spectroscopy (FTIR) and Energy Dispersive X-ray (EDX) analysis for better
understanding of its nanotubes structure and the chemical bonding present.
Based on characterization analysis, the formation of nanotubes was in
systematic arrangement and makes it easier for loading of noble catalyst.
Furthermore, the replacement of sodium content by hydrogen ion, H+ also seem to
be increasing after the acid washing treatment. The investigation result proven
that the best concentration of NaOH for TiO2 nanotubes formation was
10 M (TNT-10).
Keywords: TiO2
nanotubes, hydrothermal reaction, concentration of sodium hydroxide
Abstrak
Melalui kajian ini, nanotiub titanium dioksida disintesiskan mengikut
kepekatan sodium hidrosida (NaOH) yang berbeza. Tujuan utama kajian ini adalah
untuk mengkaji kesan kepekatan NaOH yang tinggi terhadap pembentukan struktur
nanotiub. Nanotiub titanium dioksida (TNT) dihasilkan dengan menggunakan kaedah
hidrotermal menggunakan turus teflon autoklaf keluli anti karat dengan
mempelbagaikan kepekatan NaOH (6 M hingga 12 M). Tempoh dan suhu proses
hidrotermal masing-masing dibiarkan sekata selama 24 jam dan 110 oC.
Pencirian TNT dijalankan dengan menggunakan Mikroskopi Elektron Pengimbasan Pancaran Medan (FESEM),
Pembelauan Sinar X (XRD),
Spektroskopi Inframerah Transformasi Fourier (FTIR) dan Tenaga Serakan Sinar X (EDX) bagi memahami dengan lebih mendalam
mengenai struktur nano dan juga ikatan kimia yang wujud. Berdasarkan analisis
yang dijalankan, didapati nanotiub berada dalam keadaan yang sistematik dan
memudahkan penempatan pemangkin adi. Tambahan pula, penggantian kandungan
sodium oleh H+ juga meningkat selepas proses pembasuhan menggunakan asid.
Keputusan ujikaji menunjukkan kepekatan 10 M (TNT-10) adalah yang terbaik bagi
menghasilkan nanotiub TiO2.
Kata
kunci: nanotiub TiO2, tindak balas hidrotermal, kepekatan sodium
hidroksida
References
1.
Kim,
J. H., Kang, H. K., Woo, S. G., Jeong, G., Park, M. S., Kim, K.
J., Yu, J. S., Yim, T., Jo, Y. N., Kim, H. and Zhu, K. (2014). Oriented TiO2 nanotubes
as a lithium metal storage medium. Journal
of Electroanalytical Chemistry, 726: 51 – 54.
2.
Perillo,
P. M. and Rodriguez, D. F. (2012). The
gas sensing properties at room temperature of TiO2 nanotubes by anodization. Sensors and Actuators B: Chemical, 171:
639 – 643.
3.
Abida,
B., Chirchi, L., Baranton, S., Napporn, T. W., Kochkar, H., Léger, J. M. and
Ghorbel, A. (2011). Preparation and characterization of Pt/TiO2
nanotubes catalyst for methanol electro-oxidation. Applied Catalysis B: Environmental, 106(3): 609 – 615.
4.
Abida,
B., Chirchi, L., Baranton, S., Napporn, T. W., Morais, C., Léger, J. M. and
Ghorbel, A. (2013). Hydrogenotitanates nanotubes
supported platinum anode for direct methanol fuel cell. Journal of Power Sources, 241: 429 – 439.
5.
Dong,
B., He, B. L., Chai, Y. M. and Liu,
C. G. (2010). Novel Pt nanoclusters/titanium
dioxide nanotubes composites for hydrazine oxidation. Materials Chemistry and Physics, 120: 404 – 408.
6.
Dong,
B., He, B. L., Huang, J., Gao, G. Y., Yang, Z. and Li, H. L. (2008). High
dispersion and electrocatalytic activity of Pd/titanium dioxide nanotubes
catalysts for hydrazine oxidation. Journal
of Power Sources, 175(1): 266 – 271.
7.
Gan,
Y. X., Gan, B. J. and Su, L. (2011). Biophoto
fuel cell anode containing
self-organized titanium dioxide nanotube array. Materials Science and Engineering: B, 176(15): 1197 – 1206.
8.
Liang,
H-C., Li, X-Z. and Nowotny,
J. (2010). Photocatalytical properties of TiO2
nanotubes. Solid State Phenomena, 162: 295 – 328.
9.
Sun,
Y., Wang, G. and Yan, K. (2011). TiO2 nanotubes for hydrogen
generation by photocatalytic water splitting in a two-compartment
photoelectrochemical cell. International
Journal of Hydrogen Energy, 36(24): 15502 – 15508.
10.
Sun,
Y. and Yan, K. P. (2014). Effect of anodization voltage on performance of TiO2
nanotube arrays for hydrogen generation in a two-compartment photoelectrochemical cell. International Journal of Hydrogen Energy,
39: 11368 – 11375.
11.
Han,
C. H., Hong, D. W., Kim, I. J., Gwak, J., Han, S. D. and Singh,
K. C. (2007). Synthesis of Pd or Pt/titanate nanotube and its application to
catalytic type hydrogen gas sensor. Sensors
and Actuators B: Chemical, 128(1): 320 – 325.
12.
Lee,
J., Kim, D. H., Hong, S. H. and Jho, J. Y. (2011). A hydrogen
gas sensor employing
vertically aligned TiO2 nanotube arrays prepared by
template-assisted method. Sensors and
Actuators B: Chemical, 160(1): 1494 – 1498.
13.
Jun,
Y., Zarrin, H., Fowler, M. and Chen, Z. (2011). Functionalized titania nanotube
composite membranes for high temperature
proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 36(10): 6073 – 6081.
14.
Matos,
B. R., Isidoro, R. A., Santiago, E. I., Tavares, A. C., Ferlauto, A. S., Muccillo, R. and Fonseca, F. C. (2015).
Nafion–titanate nanotubes composites prepared by in situ crystallization and
casting for direct ethanol fuel cells. International Journal of Hydrogen Energy,
40(4): 1859 – 1867.
15.
Song,
H., J. Shang, and C.
Suo (2015). Fabrication of TiO2
nanotube arrays by rectified alternating
current anodization. Journal of Materials
Science & Technology, 31(1): 23 – 29.
16.
Karaman,
M., Sarıipek, F., Köysüren, Ö. and Yıldız, H. B. (2013). Template assisted
synthesis of photocatalytic titanium dioxide
nanotubes by hot filament chemical vapor deposition method. Applied
Surface Science, 283: 993 – 998.
17.
Ju,
J., Shi, Y. and Wu,
D. (2012). TiO2 nanotube supported Pd-Ni catalyst for methanol electro-oxidation.
Powder Technology, 230: 252 – 256.
18.
Kasuga,
T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara,
K. (1998). Formation of titanium oxide nano-tube. Langmuir, 14(12): 3160 – 3163.
19.
Kasuga,
T. (2006). Formation of titanium oxide nanotubes using chemical
treatments and their characteristic properties. Thin Solid Films, 496(1): 141 – 145.
20.
Kasuga,
T., Hiramatsu, M., Hoson, A., Sekino, T. and Niihara,
K. (1999). Titania nanotubes prepared by chemical processing. Advanced Materials, 11(15): 1307 – 1311.
21.
Liu,
W., Sun, W., Han, Y., Ahmad, M. and Ni, J. (2014). Adsorption of Cu
(II) and Cd (II) on titanate nano-materials
synthesized via hydrothermal method under different NaOH concentrations: Role
of sodium content. Colloids and Surfaces
A: Physicochemical and Engineering Aspects, 452: 138 – 147.
22.
Huang,
J., Cao, Y., Deng, Z. and Tong, H. (2011). Formation of titanate nanostructures under
different NaOH concentration and their application
in wastewater treatment. Journal of Solid State Chemistry,
184(3): 712 – 719.
23.
Sui,
X. L., Wang, Z. B., Li, C. Z., Zhang, J. J., Zhao, L. and Gu, D. M. (2014).
Effect of pH value on H2 Ti2O5/TiO2
composite nanotubes as Pt catalyst support for methanol oxidation. Journal of Power Sources, 272: 196 –
202.
24.
Sui,
X. L., Wang, Z. B., Yang, M., Huo, L., Gu, D. M. and Yin, G. P. (2014).
Investigation on C–TiO 2 nano-tubes composite as Pt catalyst support for
methanol electrooxidation. Journal of
Power Sources, 255: 43 – 51.
25.
Camposeco,
R., Castillo, S., Mejia-Centeno, I., Navarrete, J. and Gómez, R.
(2014). Effect of the Ti/Na molar ratio on the acidity and the structure of TiO2
nanostructures: Nanotubes, nanofibers and nanowires. Materials Characterization, 90: 113 – 120.