Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1405 - 1412

DOI: http://dx.doi.org/10.17576/mjas-2016-2006-20

 

 

 

INFLUENCE OF HIGHLY CONCENTRATED SODIUM HYDROXIDE (NaOH) TOWARDS FORMATION OF HIGHLY ORDERED TIO2 NANOTUBES (TNT) STRUCTURE

 

(Pengaruh Kepekatan Sodium Hidrosida (NaOH) yang Tinggi terhadap Pembentukan Struktur Bertertib Nanotiub TiO2 (TNT))

 

Masturah Abdullah1 and Siti Kartom Kamarudin1, 2*

 

1Fuel Cell Institute

2Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

*Corresponding author: ctie@vlsi.eng.ukm.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

In this study, titanium dioxide nanotubes (TNT) were synthesis according to different concentration of sodium hydroxide (NaOH). The main purpose of this study was to investigate the effect of the high concentration NaOH towards formation of TiO2 nanotubes structure. TNT was synthesized via hydrothermal method that was performed in a Teflon line stainless steel autoclave by using different concentration of NaOH (6 M to 12 M). The hydrothermal time and temperature is placed constantly for 24 hours and 110 oC respectively. The characterization of TNT was performed by Field Emission Transmission Electron Microscopy (FESEM), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Energy Dispersive X-ray (EDX) analysis for better understanding of its nanotubes structure and the chemical bonding present. Based on characterization analysis, the formation of nanotubes was in systematic arrangement and makes it easier for loading of noble catalyst. Furthermore, the replacement of sodium content by hydrogen ion, H+ also seem to be increasing after the acid washing treatment. The investigation result proven that the best concentration of NaOH for TiO2 nanotubes formation was 10 M (TNT-10).

 

Keywords:  TiO2 nanotubes, hydrothermal reaction, concentration of sodium hydroxide

 

Abstrak

Melalui kajian ini, nanotiub titanium dioksida disintesiskan mengikut kepekatan sodium hidrosida (NaOH) yang berbeza. Tujuan utama kajian ini adalah untuk mengkaji kesan kepekatan NaOH yang tinggi terhadap pembentukan struktur nanotiub. Nanotiub titanium dioksida (TNT) dihasilkan dengan menggunakan kaedah hidrotermal menggunakan turus teflon autoklaf keluli anti karat dengan mempelbagaikan kepekatan NaOH (6 M hingga 12 M). Tempoh dan suhu proses hidrotermal masing-masing dibiarkan sekata selama 24 jam dan 110 oC. Pencirian TNT dijalankan dengan menggunakan Mikroskopi Elektron Pengimbasan Pancaran Medan (FESEM), Pembelauan Sinar X (XRD), Spektroskopi Inframerah Transformasi Fourier (FTIR) dan Tenaga Serakan Sinar X (EDX) bagi memahami dengan lebih mendalam mengenai struktur nano dan juga ikatan kimia yang wujud. Berdasarkan analisis yang dijalankan, didapati nanotiub berada dalam keadaan yang sistematik dan memudahkan penempatan pemangkin adi. Tambahan pula, penggantian kandungan sodium oleh H+ juga meningkat selepas proses pembasuhan menggunakan asid. Keputusan ujikaji menunjukkan kepekatan 10 M (TNT-10) adalah yang terbaik bagi menghasilkan nanotiub TiO2.

 

Kata kunci:  nanotiub TiO2, tindak balas hidrotermal, kepekatan sodium hidroksida

 

References

1.       Kim, J. H.,  Kang, H. K.,  Woo, S. G., Jeong, G., Park, M. S., Kim, K. J., Yu, J. S., Yim, T., Jo, Y. N., Kim, H. and  Zhu, K. (2014). Oriented TiO2 nanotubes as a lithium metal storage medium. Journal of Electroanalytical Chemistry, 726: 51 – 54.

2.       Perillo, P. M. and Rodriguez, D. F. (2012).  The gas sensing properties at room temperature of  TiO2 nanotubes by anodization. Sensors and Actuators B: Chemical, 171: 639 – 643.

3.       Abida, B., Chirchi, L., Baranton, S., Napporn, T. W., Kochkar, H., Léger, J. M. and Ghorbel, A. (2011). Preparation  and  characterization of Pt/TiO2 nanotubes catalyst for methanol electro-oxidation. Applied Catalysis B: Environmental, 106(3): 609 – 615.

4.       Abida, B., Chirchi, L., Baranton, S., Napporn, T. W., Morais, C., Léger, J. M. and Ghorbel, A. (2013). Hydrogenotitanates  nanotubes supported platinum anode for direct methanol fuel cell. Journal of Power Sources, 241: 429 – 439.

5.       Dong, B.,  He, B. L.,  Chai, Y. M.  and  Liu, C. G. (2010).  Novel  Pt  nanoclusters/titanium dioxide nanotubes composites for hydrazine oxidation. Materials Chemistry and Physics, 120: 404 – 408.

6.       Dong, B., He, B. L., Huang, J., Gao, G. Y., Yang, Z. and Li, H. L. (2008). High dispersion and electrocatalytic activity of Pd/titanium dioxide nanotubes catalysts for hydrazine oxidation. Journal of Power Sources, 175(1): 266 – 271.

7.       Gan, Y. X., Gan, B. J. and Su, L. (2011).  Biophoto fuel  cell anode containing self-organized titanium dioxide nanotube array. Materials Science and Engineering: B, 176(15): 1197 – 1206.

8.       Liang, H-C.,  Li, X-Z.  and  Nowotny, J.  (2010).  Photocatalytical  properties  of  TiO2  nanotubes. Solid State Phenomena, 162: 295 – 328.

9.       Sun, Y., Wang, G. and Yan, K. (2011). TiO2 nanotubes for hydrogen generation by photocatalytic water  splitting in a two-compartment photoelectrochemical cell. International Journal of Hydrogen Energy, 36(24): 15502 – 15508.

10.    Sun, Y. and Yan, K. P. (2014). Effect of anodization voltage on performance of TiO2 nanotube arrays for  hydrogen  generation  in  a  two-compartment  photoelectrochemical  cell.  International Journal of Hydrogen Energy, 39: 11368 – 11375.

11.    Han, C. H.,  Hong, D. W.,  Kim, I. J.,  Gwak, J.,  Han, S. D.  and  Singh, K. C. (2007).  Synthesis  of  Pd  or  Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor. Sensors and Actuators B: Chemical, 128(1): 320 – 325.

12.    Lee, J., Kim, D. H., Hong, S. H. and Jho, J. Y. (2011).  A  hydrogen  gas  sensor  employing vertically aligned TiO2 nanotube arrays prepared by template-assisted method. Sensors and Actuators B: Chemical, 160(1): 1494 – 1498.

13.    Jun, Y., Zarrin, H., Fowler, M. and Chen, Z. (2011). Functionalized titania nanotube composite membranes for high  temperature  proton  exchange  membrane  fuel cells. International Journal of Hydrogen Energy, 36(10): 6073 – 6081.

14.    Matos, B. R.,  Isidoro, R. A.,  Santiago, E. I.,  Tavares, A. C.,  Ferlauto, A. S.,  Muccillo, R. and Fonseca, F. C. (2015). Nafion–titanate nanotubes composites prepared by in situ crystallization and casting  for  direct ethanol fuel cells. International Journal of Hydrogen Energy, 40(4): 1859 – 1867.

15.    Song, H.,  J. Shang,  and  C. Suo (2015).  Fabrication  of  TiO2  nanotube arrays by rectified alternating current anodization. Journal of Materials Science & Technology, 31(1): 23 – 29.

16.    Karaman, M., Sarıipek, F., Köysüren, Ö. and Yıldız, H. B. (2013). Template assisted synthesis of photocatalytic titanium  dioxide nanotubes by hot filament chemical vapor deposition method.  Applied Surface Science, 283: 993 – 998.

17.    Ju, J.,  Shi, Y.  and  Wu, D.  (2012).  TiO2  nanotube  supported  Pd-Ni catalyst for methanol electro-oxidation. Powder Technology, 230: 252 – 256.

18.    Kasuga, T.,  Hiramatsu, M.,  Hoson, A.,  Sekino, T.  and  Niihara, K. (1998). Formation of titanium oxide nano-tube. Langmuir, 14(12): 3160 – 3163.

19.    Kasuga, T. (2006).  Formation  of  titanium oxide nanotubes using chemical treatments and their characteristic properties. Thin Solid Films, 496(1): 141 – 145.

20.    Kasuga, T.,  Hiramatsu, M.,  Hoson, A.,  Sekino, T.  and  Niihara, K.  (1999).  Titania  nanotubes  prepared  by chemical processing. Advanced Materials, 11(15): 1307 – 1311.

21.    Liu, W., Sun, W., Han, Y., Ahmad, M. and Ni, J. (2014).  Adsorption  of  Cu (II)  and Cd (II) on titanate nano-materials synthesized via hydrothermal method under different NaOH concentrations: Role of sodium content. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 452: 138 – 147.

22.    Huang, J., Cao, Y., Deng, Z. and Tong, H. (2011).  Formation of titanate nanostructures under different NaOH concentration  and  their  application  in wastewater treatment. Journal of Solid State Chemistry, 184(3): 712 – 719.

23.    Sui, X. L., Wang, Z. B., Li, C. Z., Zhang, J. J., Zhao, L. and Gu, D. M. (2014). Effect of pH value on  H2 Ti2O5/TiO2 composite nanotubes as Pt catalyst support for methanol oxidation. Journal of Power Sources, 272: 196 – 202.

24.    Sui, X. L.,  Wang, Z. B.,  Yang, M.,  Huo, L., Gu, D. M. and Yin, G. P. (2014). Investigation on C–TiO 2 nano-tubes composite as Pt catalyst support for methanol electrooxidation. Journal of Power Sources, 255: 43 – 51.

25.    Camposeco, R.,  Castillo, S.,  Mejia-Centeno, I., Navarrete, J. and Gómez, R. (2014). Effect of the Ti/Na molar ratio on  the acidity and the structure of TiO2 nanostructures: Nanotubes, nanofibers and nanowires. Materials Characterization, 90: 113 – 120.

 




Previous                    Content                    Next