Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1429 - 1436

DOI: http://dx.doi.org/10.17576/mjas-2016-2006-23

 

 

 

SURFACE CHARACTERIZATION ON ALKALI-HEAT-TREATMENT ON TITANIUM ALLOY

 

(Pencirian Rawatan Alkali-Haba ke atas Permukaan Aloi Titanium)

 

Nurul Hazwani Hanib1, Fazlena Hamzah1*, Zarina Omar2, Istikamah Subuki1

 

1Biocatalysis & Biobased Material Research Group,
Green Technology & Sustainable Development Research Community, Chemical Engineering Faculty,

Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

2Chemical Engineering Faculty,

Universiti Teknologi MARA, 23200 Bukit Besi, Dungun, Terengganu, Malaysia

 

*Corresponding author: fazlena@salam.uitm.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

Coating of apatite in a biomimetic fluid is an alternative technique for metallic coating. Key element for effective biomimetic apatite coating depends on the surface material that can be enhanced by physical and chemical pre-treatment process. Two different preparations of Titanium alloy (Ti6Al4V) have been studied namely as received (as-Ti) and abraded (ab-Ti) with SiC paper. Both samples were then immersed in 5M NaOH and 5M KOH at temperature of 60 °C for 24 hours. A passive oxide layer covered on the surface of Ti6Al4V generally changed to form alkali (Na/K) titanate layer which is mechanically unstable. Therefore, alkali-treated Ti6Al4V were heat-treated at 700 °C for 1 hour to consolidate a mechanically stable structure of amorphous alkali titanate layer. Both samples before and after heat treatment were characterized using field emission scanning electron microscope, 3D surface metrology, contact angle goniometry and X-ray diffraction. The result indicates that as-Ti treated in 5 M KOH showed an existence of porous network structure.

 

Keywords:  titanium, active surface, alkali treatment, heat treatment

 

Abstrak

Penyalutan apatit dalam cecair biomimetik adalah teknik alternatif untuk salutan logam. Faktor utama dalam penyalutan logam dengan apatit secara biomimetik yang berkesan adalah bergantung kepada sifat permukaan bahan/logam. Sifat permukaan logam boleh ditambah baik melalui proses pra-rawatan secara fizikal dan kimia. Dua persediaan yang berbeza ke atas aloi Titanium (Ti6Al4V) telah dikaji iaitu seperti yang diterima (as-Ti) dan telah dilelas (ab-Ti) dengan kertas pasir silikon karbida (SiC). Kedua-dua sampel kemudiannya direndam ke dalam 5M NaOH dan 5M KOH pada suhu 60 °C selama 24 jam. Satu lapisan oksida pasif yang meliputi atas permukaan Ti6Al4V umumnya berubah untuk membentuk lapisan alkali (Na/K) titanat yang secara mekanikal adalah tidak stabil. Oleh itu, Ti6Al4V yang telah mengalami pra-rawatan alkali telah melalui proses pemanasan haba pada suhu 700 °C selama 1 jam untuk mengukuhkan kestabilan struktur mekanikal lapisan amorfus alkali titanat. Kedua-dua sampel sebelum dan selepas rawatan haba telah dianalisa menggunakan mikroskop elektron imbasan pancaran medan, metrologi permukaan 3D, sudut sentuhan goniometri dan pembelauan sinar-X. Hasil daripada kajian ini menunjukkan bahawa as-Ti yang dirawat dengan 5M KOH menunjukkan jelas kewujudan struktur jaringan berliang.

 

Kata kunci:  titanium, permukaan aktif, rawatan alkali, rawatan haba

 

References

1.       Viceconti, M., Muccini, R., Bernakiewicz, M., Baleani, M. and Cristofolini, L. (2000). Large-sliding contact elements accurately predict levels of bone–implant micromotion relevant to osseointegration. Journal of Biomechanics, 33 (12): 1611 – 1618.

2.       Narayanan, R., Seshadri, S. K., Kwon, T. Y. and Kim, K. H. (2008). Calcium phosphate-based coatings on titanium and its alloys. Journal of Biomedical Material Research Part B: Applied Biomaterials, 85 (1): 279 – 299.

3.       Zhang, Q. & Leng, Y. (2005). Electrochemical activation of titanium for biomimetic coating of calcium phosphate. Biomaterials, 26 (18): 3853–3859.

4.       Liu, D., Yang, Q. and Troczynski, T. (2002). Sol–gel hydroxyapatite coatings on stainless steel substrates. Biomaterials, 23: 691 – 698.

5.       Wang, H., Eliaz, N., Xiang, Z., Hsu, H. P., Spector, M. and Hobbs, L. W. (2006). Early bone apposition in vivo on plasma-sprayed and electrochemically deposited hydroxyapatite coatings on titanium alloy. Biomaterials, 27 (23): 4192 – 4203.

6.       Jaworski, R., Pawlowski, L. and Petit, F. (2009). Suspension plasma sprayed titanium oxide and hydroxyapatite coatings in thermal spray 2009. Proceedings of the International Thermal Spray Conference,10: 156 – 162.

7.       Li, P. (2002). Biomimetic nano-apatite coating capable of promoting bone ingrowth. Journal of Biomedical Materials Research, 66A (1): 79–85.

8.       Bocardo, J. C. E., Heredia, M. A. L., Cortés, D. A., Ramírez, A. M. and Robles, J. M. A. (2005). Apatite formation on cobalt and titanium alloys by a biomimetic process. AZo Journal Materials Online, 1–15.

9.       Müller, F. A., Bottino, M. C., Müller, L., Henriques, V. A. R., Lohbauer, U., Bressiani, A. H. and Bressiani, J. C. (2008). In vitro apatite formation on chemically treated (P/M) Ti-13Nb-13Zr. Dental Materials, 24 (1): 50 – 56

10.    Rohanizadeh, R., Al-Sadeq, M. and Legeros, R. Z. (2004). Preparation of different forms of titanium oxide on titanium surface: Effects on apatite deposition. Journal of Biomedical Materials Research  Part A, 71(2): 343 – 352.

11.    Krupa, D., Baszkiewicz, J., Mizera, J., Borowski, T., Barcz, A., Sobczak, J. W., Biliński, A., Lewandowska-Szumieł, M. and Wojewódzka, M. (2009). Effect of the heating temperature on the corrosion resistance of alkali-treated titanium. Journal of Biomedical Materials Reserach Part A, 88(3): 589 – 598.

12.    Kokubo, T. (1996). Formation of biologically active bone-like apatite on metals and polymers by a biomimetic process. Thermochimica Acta, 280/281: 479 – 490.

13.    Kokubo, T., Kim, H.-M., Miyaji, F., Takadama, H. and Miyazaki, T. (1999). Ceramic–metal and ceramic–polymer composites prepared by a biomimetic process. Composite Part A: Applied Science and Manufacturing, 30 (4): 405 – 409.

14.    Kim, H. M., Miyaji, F., Kokubo, T. and Nakamura, T. (1997). Bonding strength of bonelike apatite layer to Ti metal substrate. Journal of Biomedical Materials Reserach, 38 (2): 121 – 127.

15.    Qu, H. and Wei, M. (2008). The effect of temperature and initial pH on biomimetic apatite coating. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 87(1): 204 – 212.

16.    Kim, C., Kendall, M. R., Miller, M. A., Long, C. L., Preston, R., Humphrey, M. B., Madden, A. S. and Tas, A. C. (2013). Comparison of titanium soaked in 5M NaOH or 5M KOH solutions. Materials Science and Engineering C, 33: 327 – 339.

17.    Mustafa, K., Wennerberg, A., Wroblewski, J., Hultenby, K., Lopez, B. S. and Arvidson, K. (2001). Determining optimal surface roughness of TiO2 blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Clinical Oral Implants Research, 12 (5): 515 – 525.

18.    Zhou, H., Nabiyouni, M. and Bhaduri, S. B. (2013). Microwave assisted apatite coating deposition on Ti6Al4V implants. Materials Science and Engineering C, 33(7): 4435 – 4443.

19.    Whyman, G and Bormashenko, E. (2011). How to make the cassie wetting state stable? Langmuir, 27(13): 8171 – 8176.

20.    Rosales-Leal, J. I., Rodríguez-Valverde. M. Mazzaglia, A., G., Ramón-Torregrosa, P. J., Díaz-Rodríguez, L., García-Martínez, O., Vallecillo-Capilla, M., Ruiz, C. and M. A. Cabrerizo-Vílchez, (2010). Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion. Colloids Surfaces A Physicochemical and Engineering Aspects, 365 (1–3): 222 – 229.

21.    Wei, M., Kim, H.-M., Kokubo, T. and Evans, J. H. (2002). Optimising the bioactivity of alkaline-treated titanium alloy. Materials Science and Engineering C, 20 (1–2): 125 – 134.

22.    Ciobanu, G., Carja, G., Ciobanu, O., Sandu, I. and Sandu, A. (2009). SEM and EDX studies of bioactive hydroxyapatite coatings on titanium implants. Micron, 40 (1): 143 – 146.

23.    Wang, X., Liu, S. J., Qi, Y. M., Zhao, L. C. and Cui, C. X. (2014). Behavior of potassium titanate whisker in simulated body fluid. Materials Letters, 135: 139 – 142.

24.    Li, J., Zhang, Y. C. and Zhang, M. (2012). Low temperature preparation and optical properties of K2Ti6O13. Materials Letters, 79: 136–138.

25.    Kim, H.-M. and Miyaji, F. (1996). Preparation of bioactive Ti and its alloys via simple chemical surface treatment. Journal of Biomedical and Materials Research, 32: 409 – 417.

 




Previous                    Content                    Next