Malaysian
Journal of Analytical Sciences Vol 20 No 6 (2016): 1429 - 1436
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-23
SURFACE
CHARACTERIZATION ON ALKALI-HEAT-TREATMENT ON TITANIUM ALLOY
(Pencirian
Rawatan Alkali-Haba ke atas Permukaan Aloi Titanium)
Nurul Hazwani
Hanib1, Fazlena Hamzah1*, Zarina Omar2,
Istikamah Subuki1
1Biocatalysis & Biobased Material Research Group,
Green Technology & Sustainable Development Research Community, Chemical
Engineering Faculty,
Universiti
Teknologi MARA, 40450 Shah
Alam, Selangor, Malaysia
2Chemical Engineering Faculty,
Universiti
Teknologi MARA, 23200 Bukit Besi, Dungun, Terengganu, Malaysia
*Corresponding author: fazlena@salam.uitm.edu.my
Received: 21
October 2015; Accepted: 14 June 2016
Abstract
Coating of
apatite in a biomimetic fluid is an alternative technique for metallic coating.
Key element for effective biomimetic apatite coating depends on the surface
material that can be enhanced by physical and chemical pre-treatment process.
Two different preparations
of Titanium alloy (Ti6Al4V) have been
studied namely as received (as-Ti) and abraded (ab-Ti) with SiC paper. Both samples were then immersed in 5M NaOH
and 5M KOH at temperature of 60 °C for 24 hours. A passive oxide layer covered
on the surface of Ti6Al4V generally changed to form alkali (Na/K) titanate
layer which is mechanically unstable. Therefore, alkali-treated Ti6Al4V were
heat-treated at 700 °C for 1 hour to consolidate a mechanically stable
structure of amorphous alkali titanate layer. Both samples before and after
heat treatment were characterized using field emission scanning electron
microscope, 3D surface metrology, contact angle goniometry and X-ray
diffraction. The result indicates that as-Ti
treated in 5 M KOH showed an existence of porous network structure.
Keywords: titanium, active surface, alkali treatment,
heat treatment
Abstrak
Penyalutan apatit dalam cecair biomimetik
adalah teknik alternatif untuk salutan logam. Faktor utama dalam penyalutan
logam dengan apatit secara biomimetik yang berkesan adalah bergantung kepada
sifat permukaan bahan/logam. Sifat permukaan logam boleh ditambah baik melalui
proses pra-rawatan secara fizikal dan kimia. Dua persediaan yang berbeza ke
atas aloi Titanium (Ti6Al4V) telah dikaji iaitu seperti yang diterima (as-Ti) dan telah dilelas (ab-Ti) dengan kertas pasir silikon
karbida (SiC). Kedua-dua sampel kemudiannya direndam ke dalam 5M NaOH dan 5M
KOH pada suhu 60 °C selama 24 jam. Satu lapisan oksida pasif yang meliputi atas
permukaan Ti6Al4V umumnya berubah untuk membentuk lapisan alkali (Na/K) titanat
yang secara mekanikal adalah tidak stabil. Oleh itu, Ti6Al4V yang telah
mengalami pra-rawatan alkali telah melalui proses pemanasan haba pada suhu 700 °C
selama 1 jam untuk mengukuhkan kestabilan struktur mekanikal lapisan amorfus
alkali titanat. Kedua-dua sampel sebelum dan selepas rawatan haba telah
dianalisa menggunakan mikroskop elektron imbasan pancaran medan, metrologi
permukaan 3D, sudut sentuhan goniometri dan pembelauan sinar-X. Hasil daripada
kajian ini menunjukkan bahawa as-Ti yang dirawat dengan 5M KOH menunjukkan
jelas kewujudan struktur jaringan berliang.
Kata kunci: titanium, permukaan aktif, rawatan alkali, rawatan haba
References
1. Viceconti,
M., Muccini, R., Bernakiewicz, M., Baleani, M. and Cristofolini, L. (2000).
Large-sliding contact elements accurately predict levels of bone–implant
micromotion relevant to osseointegration. Journal of Biomechanics, 33 (12):
1611 – 1618.
2. Narayanan,
R., Seshadri, S. K., Kwon, T. Y. and Kim, K. H. (2008). Calcium phosphate-based
coatings on titanium and its alloys. Journal of Biomedical Material Research
Part B: Applied Biomaterials, 85 (1): 279 – 299.
3. Zhang,
Q. & Leng, Y. (2005). Electrochemical activation of titanium for biomimetic
coating of calcium phosphate. Biomaterials, 26 (18): 3853–3859.
4. Liu,
D., Yang, Q. and Troczynski, T. (2002). Sol–gel hydroxyapatite coatings on
stainless steel substrates. Biomaterials, 23: 691 – 698.
5. Wang,
H., Eliaz, N., Xiang, Z., Hsu, H. P., Spector, M. and Hobbs, L. W. (2006). Early
bone apposition in vivo on plasma-sprayed and electrochemically deposited
hydroxyapatite coatings on titanium alloy. Biomaterials, 27 (23): 4192 –
4203.
6. Jaworski,
R., Pawlowski, L. and Petit, F. (2009). Suspension plasma sprayed titanium
oxide and hydroxyapatite coatings in thermal
spray 2009. Proceedings of the International Thermal Spray Conference,10:
156 – 162.
7. Li,
P. (2002). Biomimetic nano-apatite coating capable of promoting bone ingrowth. Journal
of Biomedical Materials Research, 66A (1): 79–85.
8. Bocardo,
J. C. E., Heredia, M. A. L., Cortés, D. A., Ramírez, A. M. and Robles, J. M. A.
(2005). Apatite formation on cobalt and titanium alloys by a biomimetic process.
AZo Journal Materials Online, 1–15.
9. Müller,
F. A., Bottino, M. C., Müller, L., Henriques, V. A. R., Lohbauer, U., Bressiani,
A. H. and Bressiani, J. C. (2008). In vitro apatite formation on chemically
treated (P/M) Ti-13Nb-13Zr. Dental Materials, 24 (1): 50 – 56
10. Rohanizadeh,
R., Al-Sadeq, M. and Legeros, R. Z. (2004). Preparation of different forms of
titanium oxide on titanium surface: Effects on apatite deposition. Journal of
Biomedical Materials Research Part A,
71(2): 343 – 352.
11. Krupa,
D., Baszkiewicz, J., Mizera, J., Borowski, T., Barcz, A., Sobczak, J. W., Biliński,
A., Lewandowska-Szumieł, M. and Wojewódzka, M. (2009). Effect of the heating
temperature on the corrosion resistance of alkali-treated titanium. Journal of
Biomedical Materials Reserach Part A, 88(3): 589 – 598.
12. Kokubo,
T. (1996). Formation of biologically active bone-like apatite on metals and polymers
by a biomimetic process. Thermochimica Acta, 280/281: 479 – 490.
13. Kokubo,
T., Kim, H.-M., Miyaji, F., Takadama, H. and Miyazaki, T. (1999). Ceramic–metal
and ceramic–polymer composites prepared by a biomimetic process. Composite
Part A: Applied Science and Manufacturing, 30 (4): 405 – 409.
14. Kim,
H. M., Miyaji, F., Kokubo, T. and Nakamura, T. (1997). Bonding strength of
bonelike apatite layer to Ti metal substrate. Journal of Biomedical
Materials Reserach, 38 (2): 121 – 127.
15. Qu,
H. and Wei, M. (2008). The effect of temperature and initial pH on biomimetic
apatite coating. Journal of Biomedical Materials Research Part B: Applied
Biomaterials, 87(1): 204 – 212.
16. Kim,
C., Kendall, M. R., Miller, M. A., Long, C. L., Preston, R., Humphrey, M. B., Madden,
A. S. and Tas, A. C. (2013). Comparison of titanium soaked in 5M NaOH or 5M KOH
solutions. Materials Science and Engineering C, 33: 327 – 339.
17. Mustafa,
K., Wennerberg, A., Wroblewski, J., Hultenby, K., Lopez, B. S. and Arvidson, K.
(2001). Determining optimal surface roughness of TiO2 blasted
titanium implant material for attachment, proliferation and differentiation of
cells derived from human mandibular alveolar bone. Clinical Oral Implants
Research, 12 (5): 515 – 525.
18. Zhou,
H., Nabiyouni, M. and Bhaduri, S. B. (2013). Microwave assisted apatite coating
deposition on Ti6Al4V implants. Materials Science and Engineering C, 33(7):
4435 – 4443.
19. Whyman,
G and Bormashenko, E. (2011). How to make the cassie wetting state stable? Langmuir,
27(13): 8171 – 8176.
20. Rosales-Leal,
J. I., Rodríguez-Valverde. M. Mazzaglia, A., G., Ramón-Torregrosa, P. J., Díaz-Rodríguez,
L., García-Martínez, O., Vallecillo-Capilla, M., Ruiz, C. and M. A.
Cabrerizo-Vílchez, (2010). Effect of roughness, wettability and morphology of
engineered titanium surfaces on osteoblast-like cell adhesion. Colloids
Surfaces A Physicochemical and Engineering Aspects, 365 (1–3): 222 – 229.
21. Wei,
M., Kim, H.-M., Kokubo, T. and Evans, J. H. (2002). Optimising the bioactivity
of alkaline-treated titanium alloy. Materials Science and Engineering C,
20 (1–2): 125 – 134.
22. Ciobanu,
G., Carja, G., Ciobanu, O., Sandu, I. and Sandu, A. (2009). SEM and EDX studies
of bioactive hydroxyapatite coatings on titanium implants. Micron, 40 (1):
143 – 146.
23. Wang,
X., Liu, S. J., Qi, Y. M., Zhao, L. C. and Cui, C. X. (2014). Behavior of
potassium titanate whisker in simulated body fluid. Materials Letters,
135: 139 – 142.
24. Li,
J., Zhang, Y. C. and Zhang, M. (2012). Low temperature preparation and optical
properties of K2Ti6O13. Materials Letters, 79: 136–138.
25. Kim,
H.-M. and Miyaji, F. (1996). Preparation of bioactive Ti and its alloys via simple
chemical surface treatment. Journal of Biomedical and Materials Research,
32: 409 – 417.