Malaysian
Journal of Analytical Sciences Vol 20 No 6 (2016): 1437 - 1446
DOI:
http://dx.doi.org/10.17576/mjas-2016-2006-24
OPTIMIZATION
OF THERMOPHILIC BIOHYDROGEN PRODUCTION BY MICROFLORA OF PALM OIL MILL EFFLUENT:
CELL ATTACHMENT ON GRANULAR ACTIVATED CARBON AS SUPPORT MEDIA
(Pengoptimuman
Pengeluaran Biohidrogen Termofilik oleh Mikroflora Efluen Kilang Minyak Sawit:
Lampiran Sel Pada Karbon Berbutir Aktif Sebagai Media Sokongan)
Nur Syakina
Jamali1,2 and Jamaliah Md Jahim1*
1Department of Chemical and Process Engineering, Faculty
of Engineering and Built Environment,
Universiti
Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Department of Chemical and Environmental
Engineering, Faculty of Engineering,
Universiti
Putra Malaysia, 43400 Serdang, Selangor, Malaysia
*Corresponding author: jamal@ukm.edu.my
Received: 21
October 2015; Accepted: 14 June 2016
Abstract
In this study, the biohydrogen
production by microflora of palm oil mill effluent (POME) from glucose and
xylose fermentation were investigated. Synthetic medium was prepared based on
sugar composition present in POME at 7 g/L of glucose and 3 g/L of xylose was
used as substrate carbon source. Prior to optimization, 10% of microflora POME
was acclimatized in the synthetic medium with the help of granular activated
carbon as their support media until consistent hydrogen percentage at 44 ± 1.7%
was obtained. Optimization that was conducted using response surface
methodology (RSM) by quadratic model of central composite design was found to
give optimum parameters of thermophilic microbial growth at pH 6, temperature
60 °C and 10% (v/v) of sludge percentage. Results obtained for hydrogen
productivity (1.32 ± 0.01 mmol H2/L.h, 32.36 ± 0.75 ml H2/L.h)
and hydrogen yield (1.22 ± 0.10 mol H2/mol sugar consumed) from an
average of experimental data reached small error of different (0.8%, 1.0% and
8.3%) to predicted RSM data at optimum condition respectively. The model
provided a useful approach for biohydrogen production by POME microflora sludge
by using granular activated carbon as their support media.
Keywords: biohydrogen,
thermophilic, palm oil mill effluent, synthetic medium, optimization
Abstrak
Melalui kajian ini, penghasilan biohidrogen oleh mikroflora
sisa kilang minyak sawit (POME) dari glukosa dan xilosa penapaian telah dikaji.
Media sintetik telah disediakan berdasarkan komposisi gula yang terkandung
dalam POME sebanyak 7 g/L glukosa dan 3 g/L xilosa telah digunakan sebagai
sumber substrat karbon. Sebelum pengoptimuman dijalankan, 10% daripada mikroflora
POME telah disesuaikan dalam media sintetik dengan bantuan karbon berbutir
aktif sebagai media sokongan mereka sehingga peratusan hidrogen secara
konsisten pada 44 ± 1.7% telah diperolehi. Pengoptimuman yang dijalankan dengan
menggunakan kaedah gerak balas permukaan (RSM) oleh model kuadratik reka bentuk
komposit berpusat telah mendapati bahawa parameter optimum bagi pertumbuhan
mikrob termofilik adalah pada pH 6, suhu 60 °C dan 10% (v/v) peratusan
enapcemar. Keputusan yang diperolehi untuk pengeluaran hidrogen (1.32 ± 0.01
mmol H2/L.h, 32.36 ± 0.75 ml H2/L.H) dan hasil hidrogen
(1.22 ± 0.10 mol H2/mol gula yang dimakan) oleh nilai purata
daripada kajian hanya memperolehi sedikit perbezaan (0.8%, 1.0% dan 8.3%) data
perolehan saranan RSM pada keadaan optimum. Model ini telah menyediakan
pendekatan yang berguna untuk penghasilan biohidrogen oleh enapcemar mikroflora
POME dengan menggunakan karbon aktif berbutir sebagai media sokongan mereka.
Kata kunci: biohidrogen, termofilik, sisa kilang minyak
sawit, media sintetik, pengoptimuman
References
1. Levin, D. B.,
Pitt, L. and Love M. (2004). Biohydrogen production: prospects and limitations
to practical applications. International
Journal of Hydrogen Energy, 29: 173 – 185.
2. Mohammed, M.,
Salmiaton. A., Azlina W. W., Amran M. M., Fakhru’l-Razi A. and Taufiq-Yap Y.
(2011). Hydrogen rich gas from oil palm biomass as a potential source of
renewable energy in Malaysia. Renewable
and Sustainable Energy Reviews, 15: 1258 – 1270.
3. Ismail, I.,
Hassan, M. A., Abdul Rahman, N. A. and Soon, C. S. (2010). Thermophilic
biohydrogen production from palm oil mill effluent (POME) using suspended mixed
culture. Biomass and Bioenergy, 34:
42 – 47.
4. Lutpi, N. A. and
Jahim, J. M. (2014). Thermophilic fermentative hydrogen production using
granular activated carbon immobilized mixed microflora. Australian Journal of Basic and Applied Sciences, 8: 134 – 137.
5. Chen, W. H.,
Chen, S.Y., Khanal S. and Sung S. (2006). Kinetic study of biological hydrogen
production by anaerobic fermentation. International
Journal of Hydrogen Energy, 31: 2170 – 2178.
6. Espinoza-Escalante
F. M., Pelayo-Ortiz C., Navarro-Corona J., Gonzalez-Garcia Y., Bories A. and Gutierrez-Pulido
H. (2009). Anaerobic digestion of the vinasses from the fermentation of Agave tequilana Weber to tequila: The
effect of pH, temperature and hydraulic retention time on the production of
hydrogen and methane. Biomass and Bioenergy,
33(1): 14 – 20.
7. Atkinson, A. C. (2011).
Optimum experimental design. International
Encyclopedia of Statistical Science. Springer Berlin Heidelberg, pp. 1037 –
1039.
8. Kim, H. M., Kim,
J, G., Cho, J. D. and Hong, J. W. (2003). Optimization and characterization of
UV-curable adhesives for optical communication by response surface methodology.
Polymer Testing, 22: 889 – 906.
9. Myers, R. H.,
Douglas C., Montgomery, and Anderson-Cook, C. M. (2001). Response surface
methodology: Process and product optimization using designed experiments. John Wiley & Sons.
10. Montgomery D. C.
(2001). Design and analysis of experiments. 5th
ed. New York: John Wiley and Sons.
11. Jamali N. S. J., Jahim J. M., Isahak W. N. R. W., and Abdul P. M. (2016). Particle size variations of activated carbon on biofilm formation in thermophilic biohydrogen production from palm oil mill effluent. Energy Conversion and Management. Article in press.
12. Jamali N. S. J., Jahim J. M., and Isahak W. N. R. W. (2016). Biofilm formation on granular activated carbon in xylose and glucose mixture for thermophilic biohydrogen production. International Journal of Hydrogen Energy, 41(6): 21617 - 21627.