Malaysian Journal of Analytical Sciences Vol 20 No 6 (2016): 1437 - 1446

DOI: http://dx.doi.org/10.17576/mjas-2016-2006-24

 

 

 

OPTIMIZATION OF THERMOPHILIC BIOHYDROGEN PRODUCTION BY MICROFLORA OF PALM OIL MILL EFFLUENT: CELL ATTACHMENT ON GRANULAR ACTIVATED CARBON AS SUPPORT MEDIA

 

(Pengoptimuman Pengeluaran Biohidrogen Termofilik oleh Mikroflora Efluen Kilang Minyak Sawit: Lampiran Sel Pada Karbon Berbutir Aktif Sebagai Media Sokongan)

 

Nur Syakina Jamali1,2 and Jamaliah Md Jahim1*

 

1Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment,

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Department of Chemical and Environmental Engineering, Faculty of Engineering,

Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

 

*Corresponding author: jamal@ukm.edu.my

 

 

Received: 21 October 2015; Accepted: 14 June 2016

 

 

Abstract

In this study, the biohydrogen production by microflora of palm oil mill effluent (POME) from glucose and xylose fermentation were investigated. Synthetic medium was prepared based on sugar composition present in POME at 7 g/L of glucose and 3 g/L of xylose was used as substrate carbon source. Prior to optimization, 10% of microflora POME was acclimatized in the synthetic medium with the help of granular activated carbon as their support media until consistent hydrogen percentage at 44 ± 1.7% was obtained. Optimization that was conducted using response surface methodology (RSM) by quadratic model of central composite design was found to give optimum parameters of thermophilic microbial growth at pH 6, temperature 60 °C and 10% (v/v) of sludge percentage. Results obtained for hydrogen productivity (1.32 ± 0.01 mmol H2/L.h, 32.36 ± 0.75 ml H2/L.h) and hydrogen yield (1.22 ± 0.10 mol H2/mol sugar consumed) from an average of experimental data reached small error of different (0.8%, 1.0% and 8.3%) to predicted RSM data at optimum condition respectively. The model provided a useful approach for biohydrogen production by POME microflora sludge by using granular activated carbon as their support media.

 

Keywords:  biohydrogen, thermophilic, palm oil mill effluent, synthetic medium, optimization

 

Abstrak

Melalui kajian ini, penghasilan biohidrogen oleh mikroflora sisa kilang minyak sawit (POME) dari glukosa dan xilosa penapaian telah dikaji. Media sintetik telah disediakan berdasarkan komposisi gula yang terkandung dalam POME sebanyak 7 g/L glukosa dan 3 g/L xilosa telah digunakan sebagai sumber substrat karbon. Sebelum pengoptimuman dijalankan, 10% daripada mikroflora POME telah disesuaikan dalam media sintetik dengan bantuan karbon berbutir aktif sebagai media sokongan mereka sehingga peratusan hidrogen secara konsisten pada 44 ± 1.7% telah diperolehi. Pengoptimuman yang dijalankan dengan menggunakan kaedah gerak balas permukaan (RSM) oleh model kuadratik reka bentuk komposit berpusat telah mendapati bahawa parameter optimum bagi pertumbuhan mikrob termofilik adalah pada pH 6, suhu 60 °C dan 10% (v/v) peratusan enapcemar. Keputusan yang diperolehi untuk pengeluaran hidrogen (1.32 ± 0.01 mmol H2/L.h, 32.36 ± 0.75 ml H2/L.H) dan hasil hidrogen (1.22 ± 0.10 mol H2/mol gula yang dimakan) oleh nilai purata daripada kajian hanya memperolehi sedikit perbezaan (0.8%, 1.0% dan 8.3%) data perolehan saranan RSM pada keadaan optimum. Model ini telah menyediakan pendekatan yang berguna untuk penghasilan biohidrogen oleh enapcemar mikroflora POME dengan menggunakan karbon aktif berbutir sebagai media sokongan mereka.

 

Kata kunci:  biohidrogen, termofilik, sisa kilang minyak sawit, media sintetik, pengoptimuman

 

References

1.       Levin, D. B., Pitt, L. and Love M. (2004). Biohydrogen production: prospects and limitations to practical applications. International Journal of Hydrogen Energy, 29: 173 – 185.

2.       Mohammed, M., Salmiaton. A., Azlina W. W., Amran M. M., Fakhru’l-Razi A. and Taufiq-Yap Y. (2011). Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia. Renewable and Sustainable Energy Reviews, 15: 1258 – 1270.

3.       Ismail, I., Hassan, M. A., Abdul Rahman, N. A. and Soon, C. S. (2010). Thermophilic biohydrogen production from palm oil mill effluent (POME) using suspended mixed culture. Biomass and Bioenergy, 34: 42 – 47.

4.       Lutpi, N. A. and Jahim, J. M. (2014). Thermophilic fermentative hydrogen production using granular activated carbon immobilized mixed microflora. Australian Journal of Basic and Applied Sciences, 8: 134 – 137.

5.       Chen, W. H., Chen, S.Y., Khanal S. and Sung S. (2006). Kinetic study of biological hydrogen production by anaerobic fermentation. International Journal of Hydrogen Energy, 31: 2170 – 2178.

6.       Espinoza-Escalante F. M., Pelayo-Ortiz C., Navarro-Corona J., Gonzalez-Garcia Y., Bories A. and Gutierrez-Pulido H. (2009). Anaerobic digestion of the vinasses from the fermentation of Agave tequilana Weber to tequila: The effect of pH, temperature and hydraulic retention time on the production of hydrogen and methane. Biomass and Bioenergy, 33(1): 14 – 20.

7.       Atkinson, A. C. (2011). Optimum experimental design. International Encyclopedia of Statistical Science. Springer Berlin Heidelberg, pp. 1037 – 1039.

8.       Kim, H. M., Kim, J, G., Cho, J. D. and Hong, J. W. (2003). Optimization and characterization of UV-curable adhesives for optical communication by response surface methodology. Polymer Testing, 22: 889 – 906.

9.       Myers, R. H., Douglas C., Montgomery, and Anderson-Cook, C. M. (2001). Response surface methodology: Process and product optimization using designed experiments. John Wiley & Sons.

10.    Montgomery D. C. (2001). Design and analysis of experiments. 5th ed. New York: John Wiley and Sons.

11.   Jamali N. S. J., Jahim J. M., Isahak W. N. R. W., and Abdul P. M. (2016). Particle size variations of activated carbon on biofilm formation in thermophilic biohydrogen production from palm oil mill effluent. Energy Conversion and Management. Article in press.

12.   Jamali N. S. J., Jahim J. M., and Isahak W. N. R. W. (2016). Biofilm formation on granular activated carbon in xylose and glucose mixture for thermophilic biohydrogen production. International Journal of Hydrogen Energy, 41(6): 21617 - 21627.

 




Previous                    Content                    Next